Alexandria Digital Research Library

Co-Optimization of Communication, Motion and Sensing in Mobile Robotic Operations

Author:
Yan, Yuan
Degree Grantor:
University of California, Santa Barbara. Electrical & Computer Engineering
Degree Supervisor:
Yasamin Mostofi
Place of Publication:
[Santa Barbara, Calif.]
Publisher:
University of California, Santa Barbara
Creation Date:
2016
Issued Date:
2016
Topics:
Robotics
Keywords:
Realistic communication environments
Channel prediction
Motion and sensing co-optimization
Motion planning
Communication
Genres:
Dissertations, Academic and Online resources
Dissertation:
Ph.D.--University of California, Santa Barbara, 2016
Description:

In recent years, there has been considerable interest in wireless sensor networks and networked robotic systems. In order to achieve the full potential of such systems, integrative approaches that design the communication, navigation and sensing aspects of the systems simultaneously are needed. However, most of the existing work in the control and robotic communities uses over-simplified disk models or path-loss-only models to characterize the communication in the network, while most of the work in networking.

and communication communities does not fully explore the benefits of motion.

This dissertation thus focuses on co-optimizing these three aspects simultaneously in realistic communication environments that experience path loss, shadowing and multi-path fading. We show how to integrate the probabilistic channel prediction framework, which allows the robots to predict the channel quality at unvisited locations, into the co-optimization design. In particular, we consider four different scenarios: 1) robotic router.

formation, 2) communication and motion energy co-optimization along a pre-defined trajectory, 3) communication and motion energy co-optimization with trajectory planning, and 4) clustering and path planning strategies for robotic data collection. Our theoretical, simulation and experimental results show that the proposed framework considerably outperforms the cases where the communication, motion and sensing aspects of the system are optimized separately, indicating the necessity of co-optimization. They further.

show the significant benefits of using realistic channel models, as compared to the case of using over-simplified disk models.

Physical Description:
1 online resource (188 pages)
Format:
Text
Collection(s):
UCSB electronic theses and dissertations
ARK:
ark:/48907/f3rv0nht
ISBN:
9781339671765
Catalog System Number:
990046534780203776
Rights:
Inc.icon only.dark In Copyright
Copyright Holder:
Yuan Yan
File Description
Access: Public access
Yan_ucsb_0035D_12932.pdf pdf (Portable Document Format)