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Abstract

Interactive Latent Space for Mood-Based Music

Recommendation

Ivana Andjelkovic

The way we listen to music has been changing fundamentally in past two

decades with the increasing availability of digital recordings and portability of

music players. Up to date research in music recommendation attracted millions of

users to online, music streaming services, containing tens of millions of tracks (e.g.

Spotify, Pandora). The main focus of up to date research in recommender systems

has been algorithmic accuracy and optimization of ranking metrics. However, re-

cent work has highlighted the importance of other aspects of the recommendation

process, including explanation, transparency, control and user experience in gen-

eral. Building on these aspects, this dissertation explores user interaction, control

and visual explanation of music related mood metadata during recommendation

process. It introduces a hybrid recommender system that suggests music artists

by combining mood-based and audio content filtering in a novel interactive in-

terface. The main vehicle for exploration and discovery in music collection is a

novel visualization that maps moods and artists in the same, latent space, built

upon reduced dimensions of high-dimensional artist-mood associations. It is not

known what the reduced dimensions represent and this work uses hierarchical

mood model to explain the constructed space. Results of two user studies, with
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over 200 participants each, show that visualization and interaction in a latent

space improves acceptance and understanding of both metadata and item recom-

mendations. However, too much of either can result in cognitive overload and a

negative impact on user experience. The proposed visual mood space and inter-

active features, along with the aforementioned findings, aim to inform design of

future interactive recommendation systems.
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Chapter 1

Introduction

1.1 Overview

Recommender systems are popular tools for predicting content that a target

user is likely to be interested in, and they are a key component in many online

systems nowadays since they allow people to find relevant items under information

overload. Despite the large amount of research into these systems in terms of

algorithmic accuracy, there are still under-explored areas such as emotion-aware

recommenders and rich interfaces beyond static ranked-lists. Due to experimental

evidence linking music and emotion, this dissertation contributes to research in

recommender systems by introducing MoodPlay, a hybrid recommender system

that suggests music bands by combining audio content and mood-based filtering

in a novel interactive interface.

1



The work presented here addresses two related research topics. First, music

recommendation that considers a user’s mood, and second, interaction mecha-

nisms that allow for explanation and elicitation of mood information. There

are several platforms that recommend music based on different types of listening

context (daily activity [85], time of the day [5], music genre [53], etc.). How-

ever, given the strong experimental evidence showing that music modulates our

emotions, which are further linked to attention and communication [48], this

research focuses on user’s moods when recommending new music. Furthermore,

the importance of building interactive recommender interfaces that go beyond the

static-ranked list paradigm has been studied in the past [23, 30, 11, 46, 84, 64, 57].

Results show that higher user satisfaction is not always correlated with small im-

provements in recommendation accuracy [56, 49], but may be correlated with

interface enhancements. Accordingly, the goal of this dissertation project is to

build a recommender system with an interactive interface that supports users on

making music choices over a mood space. Specific research questions are:

Q1: How can metadata such as mood information be visually represented for a

music recommendation system?

Q2: How can interaction, explanation and control be supported over such a vi-

sualization?

Q3: What are the effects of such interactive visualizations on the user experience

with a recommender system? For example, how much interaction is too much?
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Q4: How does knowledge of and interaction with mood metadata influence rec-

ommendation accuracy and user experience?

In the effort to answer the above questions, a web based, mood aware music

recommendation system was produced. Up to date work resulted in the following

key contributions:

• A novel visual interface for mood-aware recommendation. We introduce a

visualization that maps moods and music artists in the same space, and

allows users to explore the items along these dimensions. To our knowl-

edge, this is the first mood-based recommender interface that integrates the

Geneva Emotional Music Scales (GEMS) model [92].

• Mood-aware recommendation algorithm. We describe a novel hybrid recom-

mendation algorithm for mood and audio content-based music recommen-

dation.

• Enhanced interaction techniques. We introduce new interaction mechanisms

for hybrid recommendation on a latent space. Trail-based mechanism sup-

ports influence of previous navigational steps on the recommendation set.

Radius-based method allows users to control the ratio of mood and audio

content hybridization in the recommendation algorithm.

• Evaluation design and analysis. We present design and results of an evalua-

tion of the system. We conducted two user studies (N=240, N=279) over 4
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different conditions of increasing complexity - from baseline without visual-

ization to the full interactive interface with a hybrid mood and content-based

recommender algorithm. Based on the results, we provide some lessons for

interface design in the context of exploratory tasks in recommender systems.

To evaluate the proposed system, we conducted user studies over 4 different

conditions, having the following features: (1) static recommendations in the form

of ordered lists, generated based on user’s taste profile, (2) static recommenda-

tions, highlighted in a latent mood space visualization, (3) dynamic recommenda-

tions generated via user interaction in the latent mood space visualization, using

current mood preference and (4) dynamic, interaction driven, trail-based recom-

mendations.

Following are the key results of the system evaluation: (1) User experience

metrics generally improve in conditions with mood visualization and more so

with increased interaction, (2) Visualization and interaction in the mood space

help users understand artists’ moods and how the system arrived at the recom-

mendations, (3) Visualization of mood space increases diversity and perceived

accuracy, without impacting predictive accuracy of the algorithm, (4) Interac-

tion in the mood space increases diversity of artists that were discovered by the

user, but interaction with trail-based recommendation (provenance of positions in

the mood-space) decreased diversity, (5) The biggest significant changes in user

ratings on recommended items were observed in the most interactive condition,

however, direction of the rating shift varied across participants.
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1.2 Definitions

Recommender (recommendation system): Software that analyzes available

data to help users find desired items in a crowded information space.

Interactive recommender: Recommender that enables the user to steer the

received recommendations in the desired direction through explicit interaction

with the system [78]

Latent space: Space containing data entities after dimensionality reduction is

performed. Numerical methods are often used to represent high-dimensional data

points in 2 or 3 dimensions, meaning of which is not known in advance. Hence,

we refer to the obtained low-dimensional space a latent space.

Mood-based music recommender: Software that recommends music with the

goal to match user’s desired mood.

1.3 Affective States in Music

1.3.1 Affect, Emotions and Moods

As the title of the dissertation indicates, this research is concerned with mood-

aware recommendation. It is important to define and make a distinction between

three related terms before further delving into research problems:

Affect: Colloquial term that encompasses both emotions and moods [26, 83].

5



Emotions: Intense, short lived feelings, speculated by most researchers to be

directed at someone or something [24].

Moods: General, low intensity feeling states that often lack a contextual stimulus

[38, 87]. While the duration of emotions is typically measured in minutes, moods

may last several hours or days and cause us to think or brood for a while [38, 65].

According to Hume [38], affect is an umbrella term for emotions and moods,

which can mutually influence each other. Furthermore, both emotions and moods

are often described in terms of positive or negative affect [86]. Emotions become

mood states when grouped into positive and negative categories because such

grouping allows us to look at emotions more generally instead of in isolation [38].

Therefore, emotion models such as Circumplex model of affect [71] are often used

to represent moods as well.

1.3.2 Emotions and Moods in Music Research

Music has a strong effect on our emotions and speculatively somewhat milder

effect on our moods [83]. In fact, music has been efficiently used to induce emotions

and moods and study them outside of realm of music psychology [83]. As described

by Curtis Roads in Composing Electronic Music: A New Aesthetic [70]:

Music inevitably invokes psychological states that are bound up with emotional

responses. Even ”technical” music like the Bach Two and Three-part Inventions

(BWV 772-801) evokes affective reactions. This tightly constrained and orderly

6



music is at turns comforting, exhilarating, wistful, dazzling, contemplative, and

delightfully inventive.

Unlike in theory, the distinction between emotions and moods is not always

clear in practice and depending on the area, researchers choose to focus on one

or the other. For example, music psychologists often study emotional responses

to music, while scientists interested in computational classification of music fo-

cus more on moods [37]. Psychologists are interested in emotions, which are

short lived and may vary greatly (e.g. from sad to happy) even in a single mu-

sical piece. In contrast, to automatically classify music, researchers benefit from

metadata describing stable affective states, commonly experienced by many peo-

ple during music listening [37]. This is probably the reason why large, publicly

available music repositories (Last.fm1, AllMusic2) use moods to characterize and

organize music. Hence, the terminology adopted in this dissertation research is

recommendation based on moods rather than emotions.

1.3.3 Expression and Perception of Affect in Music

Research has shown that listeners are rather good at recognizing the intended

expression in music [83]. Juslin et al. [40] summarize characteristics of music that

listeners use to identify an intended emotional expression. For example, they in-

dicate that happy music is characterized by medium to high voice intensity/sound

level and medium high-frequency energy (among other parameters), while anger is

1http://www.last.fm
2http://www.allmusic.com
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expressed with high voice intensity/sound level and much high-frequency energy.

However, even though the listener can recognize the emotion in musical expres-

sion, she does not necessarily experience it. This can be exemplified the best with

”spooky” or ”scary” songs. It is easy for us to recognize fear in the music, but we

rarely become afraid while listening to it.

1.4 Scope and Limitations

The work presented in this document addresses research questions in several

sub-fields, including music recommendation, affective computing and interactive

interfaces. Its scope must be limited.

As justified in the previous section, the system developed in this research visu-

alizes and recommends artists using mood metadata. Although there is variance

from song to song in terms of moods for one artist, this research is based on a

comprehensive, professionally curated database where a variety of moods asso-

ciated with an artist are given weights to compensate for the fact that different

songs have different moods. As a result, moods with the greatest weights have

the most impact on the artist’s positioning in the visualization.

Next, since the professionally curated database of artist-mood associations is

used, the interactive system developed in this research does not address the differ-

ences between moods expressed through music and those perceived by listeners.

Similarly, this research does not go in depth to determine whether perceived mood
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is also induced in the listener. Evaluation sessions during which the users listened

to recommended music lasted at least 1.5 minutes and in very few cases 20 min-

utes. Such a short period of time may not be sufficient to alter listener’s mood,

but the ratings of recommendations were collected nevertheless. It is suspected

that the ratings reflect user’s opinion about how well the recommended items

match music from the user profile, how well they match mood labels in the area

of mood space where the user navigated to and how they align with user’s taste

in general.

At this stage of research, the user taste profile is built upon the list of artists

that user enters into the system. This research is not yet concerned with devel-

oping a sophisticated method for acquiring information about user’s current and

desired mood - the system simply asks users to enter artists they like to listen

to. Provided list of artists may represent user’s general preference, current mood

or desired mood, which is up to the user to decide. The recommender suggests

music in the similar mood, but also allows the user to navigate to different areas

in the mood space, therefore changing the target mood for recommendation.

Finally, the system is developed as a web application and is not optimized

for usage on mobile devices. Due to the complexity, the current architecture and

design limits its usage to situations where users can allocate sufficient time and

attention.
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1.5 Document Outline

This first chapter introduced the research questions and described the contri-

bution of the dissertation. The remainder or the thesis is organized as follows:

• Chapter 2 gives an overview of related work, including research in music

recommendation, affective computing, emotion models and interfaces for

music recommendation.

• Chapter 3 describes proposed visualization of artist - mood associations.

It argues there is a need to create a visual, music specific mood space for

music recommendation and discovery, describes the research conducted in

this area and implementation details of visual mood space.

• Chapter 4 introduces MoodPlay - a mood based recommendation system

with rich interface, developed as a tool for answering research questions of

this thesis. It includes details about interface design and hybrid recommen-

dation algorithms.

• Chapter 5 describes the procedure and measures for evaluating the proposed

system.

• Chapter 6 presents results of a preliminary user study (N=240). The eval-

uation of the system though this study was focused on user characteristics,

interaction and experience, and less attention was placed on ratings-based

analyses.
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• Chapter 7 presents results on second, more comprehensive user study (N=279),

with improved user interface and experiment design. In addition to more

detailed investigation of user interaction and exploration and their effects

on recommendation ratings and diversity, we also explore influence of mood

on ratings.

• Chapter 8 summarizes the contributions and findings of this thesis, and

discusses directions for future research.

11



Chapter 2

Background

The research covered by this thesis spans over several related areas: music

recommendation, interfaces for recommendation and mood aware recommender

systems. Yet, at its core, it is a multifaceted study of the interplay between

music, mood and listener, with aspects of automated algorithms, UI, interaction

design and user modeling. This chapter presents relevant studies in the above

mentioned areas and describes where the thesis contributions stand in relation to

them.

2.1 Music Recommendation

Recommendations in the music domain is a well-established field within rec-

ommender systems. Among many others, methods have been developed to rec-

ommend tracks [17, 52], albums [62], artists and music bands [11, 35], playlists

12



[53, 4, 34], music targeted at specific venues [41] and music targeted at daily

activities [85]. Furthermore, many of the music recommendation algorithms are

being developed and improved in commercial setting, due to availability of online

streaming services that give listeners access to millions of songs. The remainder

of this section describes common machine learning methods employed to calculate

recommendations and main features of popular music recommendation platforms.

Current state of the art algorithms for music recommendation can be divided

into four main categories, depending on the type of data they utilize [16].

1. Collaborative filtering (CF) method typically uses rating or purchase pat-

terns of like minded individuals to make recommendations for active user.

It commonly relies on music metadata – textual information about songs

and artists that can be factual (title, release data, geographical location) or

cultural (genre, mood, social tags1).

2. Context based (CXB) methods rely on web mining techniques and social

tags, in order to derive context of music, based on which the similarity

between songs or artists is computed.

3. Content based (CNB) methods utilize item content to compute the similarity

and recommend new items. Most often this is audio content, which can be

computed using signal analysis methods or it can be described manually by

musicologists.

1Short textual descriptors of songs or artists provided by many users
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4. Hybrid (H) methods can be any combination of previously listed methods.

They help minimize the disadvantages of individual algorithms.

Many of the currently available commercial music information retrieval (MIR)

systems rely heavily on collaborative filtering, possibly in the combination with

context based techniques (e.g. Last.fm2, iTunes Genius3). They work very well

when large amount of data is available, but one of their major drawbacks is the

”long-tail” problem – less known items have less metadata and ratings associated

with them, hence they are less likely to be found in queries and recommended as

relevant items. Therefore, systems relying on collaborative data and metadata are

not suitable for music discovery and need to be complemented by content-based

methods [15].

On the other hand, purely content based retrieval methods do not capture

some of the information that users can provide with metadata [18]. For exam-

ple, music descriptors such as dreamy, signer-songwriter, vintage can hardly be

extracted from acoustic content. Furthermore, some studies suggest that music

similarity using acoustic features has reached the glass ceiling of around 50% for

general audio similarity (Mirex4 evaluations) and roughly estimating, up to 70%

using various constraints (Mirex, [3, 8]). Consequently, hybrid systems, such as

those combining content based and metadata based techniques can yield better

recommendation results than individual methods [10].

2http://www.last.fm
3https://support.apple.com/kb/PH20373
4http://www.music-ir.org/mirex/wiki/MIREX HOME
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To better understand the features of popular music recommendation systems,

Table 2.1 summarizes their characteristics. In most cases, detailed information

about recommendation algorithms they employ is not available. Hence, the table

lists most prominent algorithm each of the systems use, which may be in reality

complemented with other techniques to improve the recommendation. Social net-

working feature refers to the ability of users to connect and communicate with

each other, and social tags are music descriptors provided by users themselves.

Because the music listening context is of particular importance for this research

project, any references to mood and context associated with songs or artists are

examined as well.

It can be seen from the table that many services allow users to connect with

each other, thus making music listening a social experience. This facilitates the

creation of social tags – words describing genre, mood, context or general impres-

sion, that users associate with tracks and artists. However, it can be noted that

current systems do not offer fully developed recommendation based on the varying

contexts of music listening experiences. Among the listed systems, Musicovery is

the only service that provides automatic recommendation based on the mood.

Stereomood offers automatically created playlists based on moods and context,

but it relies on user provided tags which are sparse and noisy. Remaining three

systems, Songza, Spotify and All Music Guide offer mood and context based mu-

sic suggestions but not in the form of interactive and continuous music listening

experience.
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System Source of data
Recommend.

algorithm
Social

network
Social
tags

References to
music moods

References to
music context

Pandora
Musicologist take

surveys
CNB x - - -

Last.fm

Activity data,
tags on artists

and songs,
acoustic analysis

CF x x - -

Spotify
Acoustic analysis,

text analysis
CXB + CNB(by

EchoNest)
x -

Manually
created

playlists based
on moods

Manually
created

playlists based
on context

Songza
Editors or music

fans make
playlists

N/A x -

Manually
created

playlists based
on moods

Manually
created

playlists based
on context

iTunes
Genius

Purchase data,
activity data
from iTunes

CF - - - -

Grooveshark Unknown Unknown x x - -

Stereomood Unknown Unknown - x

Automatically
created

playlists based
on social tags
that reflect

moods

Automatically
created

playlists based
on social tags
that reflect

context

Rdio
Acoustic analysis,

text analysis
CXB + CNB(by

EchoNest)
x - - -

Musicovery Unknown Unknown - -

Automatic rec-
ommendation
based on the

mood

-

All Music
Guide

Music editors &
writers

Unknown - -

Editorial mood
tags. Tracks
and artists

categorized by
mood.

Editorial mood
tags. Tracks
and artists

categorized by
context.

Table 2.1: List of popular music recommendation systems and their characteristics

The general approach taken by popular music recommendation systems is to

learn about user’s taste from a seed song or listening history, and to suggest more

of the same music. Recommendations are usually presented as an ordered list,

either in text or by playing one song after another. User’s interaction with a

system is often limited to liking, disliking and skipping a song, which affects sub-

sequent music suggestions. On the other hand, academic research of interaction

and user controllability in recommendation systems is steadily advancing. Par-

ticularly relevant to this thesis is TasteWeights, a system that allows users to

control different aspects of a hybrid recommendation algorithm through a visual

interactive interface [11].
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Compared to previous approaches outlined here, this thesis innovates by (1)

using hybrid of artists’ mood representation and audio content to compute sim-

ilarity and recommend items based based on user’s mood, (2) by introducing a

novel recommendation interface and (3) by providing user controls to explore the

artists dataset interactively.

2.2 Affective Computing and Recommendation

Research in affective computing has been gaining extensive attention in re-

cent years. Proliferation of mobile and wearable computer devices makes it both

necessary and possible to achieve natural and harmonious human-computer inter-

action. Such devices enable us to track a variety of sources that carry emotional

content. For example, different aspects of bodily movement and gestures have

been used to recognize emotions: head and hands motion [27], gout patterns [42],

body posture [44], to name a few. In the speech domain, vocal parameters such

as pitch, speaking rate, formants and modulation of spectral content have also

been successfully used to classify emotions in [66, 90, 88]. Furthermore, currently

largest data repository of face videos (2 million) owned by Affectiva5 is efficiently

used to train computers in detecting emotions from facial expressions in real time.

The important role of emotions on human decision-making and judgement

[67, 58] has made mood an actively studied variable in context-aware recommender

systems. For instance, Masthoff et al. [54] integrated affective state in a group

5http://www.affectiva.com
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recommender system by modeling satisfaction as mood, while González et al.

[28] incorporated the emotional context in a recommender system for a large e-

commerce learning guide. More related to this thesis, Park et al. [61] developed

probably the first context-aware music recommender that exploited mood inferred

from context information. Other works followed their approach inferring the users’

mood for music recommendation based on movements, temperature and weather

[21] or from the music content [69]. For instance, Griffiths et al. [31] measured

a variety of contextual and physiological indicators of mood (temperature, light,

heart activity). Mapping of both users’ mood and music on the same emotion map

enabled them to recommend music in the detected mood. Zwaag et al. [82] took

target mood as an input from user and then selected songs that direct the user

towards the desired mood, while measuring skin conductance to verify the change.

Skin temperature [39] and arm gestures [2] have also been used for inferring mood

and querying music collections.

Tkalcic et al. [81, 33] discussed the role of emotions in recommender systems

and introduced a framework to identify the stages where emotion can be used for

recommendation. They identified four main areas of research (i) the use of emo-

tions as context in the entry stage, (ii) modeling affective content user profiles,

(iii) using affective profiles for recommending items and (iv) building datasets.

Within these categories, system proposed in this thesis deals with (i), (ii) and (ii).

Moodplay uses emotions as entry stage by allowing users to navigate artists in a

mood space, it models the user profile as a set of artist which are represented in a
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mood-based vector model, and these mood-based profiles are used for recommend-

ing music artists. In addition, rich user interface is proposed to help users explore

mood space and choose music in desired mood. In the future, the system would

be greatly enhanced by incorporating a method for automatic mood detection,

using sensors available on wearable devices, social media activity or contextual

information.

2.3 Interactive Interfaces for Recommendation

Systems

The importance of developing interfaces for recommender systems rather than

focusing only on improving recommendation algorithms, a user-centric approach,

has been highlighted by the work of MacNee et al. [56] and Konstan et al. [49],

who showed that small improvements in recommender accuracy do not necessarily

improve users’ satisfaction with a system. While rankings and similarity are of

great importance to information search and recommendation, a level of diversity,

surprise and serendipity is often desirable during music listening [76, 73]. These

latter aspects can be supported by carefully designed user interface. Yet, the

development of interfaces that present recommended items in a visual model dif-

ferent than a static ranked list is rather scarce. Some examples include SFViz [29],

a sunburst visualization that allow users to find interest-based recommendation in

Last.fm, and Pharos [93], a social map visualization of latent communities. Other
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examples that, in addition to visualizations, include a richer user interaction are

PeerChooser [59], SmallWorlds [30] – that focus in representing collaborative fil-

tering, and TasteWeights [11] [46], an interactive system that represents a hybrid

recommender of music bands. In a different domain, TalkExplorer [84] is a graph-

based interface with facets that let users explore and find relevant conference talks

by analyzing the connections of different entities. Other work on visual interfaces

related to the academic domain is SetFusion [64], an interface for conference ar-

ticle recommendation that makes use of an interactive Venn diagram to let users

control the importance of different recommendation approaches, and a range of

systems that support dynamic critiquing of an algorithm, such as Pu et al. [68]

and Chen et al. [19]. Finally, with a focus on making users aware of the filter-

ing mechanisms on a social network, Nagulendra and Vassileva [57] created an

interactive interface presenting groups of categories and people into bubbles with

the purpose of providing users’ with awareness and control of the personalization

mechanism.

Building on concepts from these previous works, MoodPlay offeres novel inter-

face that maps artists in a mood-space and allows user to navigate the space by

moving an avatar. It also ncorporates the notion of trails to account for historical

user preference data and allow the user more flexibility on an incremental process

of obtaining recommendations.
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2.4 Visualizations of Music Collections

Visualizations are invaluable tool for exploring large datasets and understand

relationships between items. To be truly effective, visual layout is often accom-

panied with interface for data filtering, highlighting relevant items or displaying

additional information. For example, Soriano et al. [77] developed a tool for

exploring music collection based on musical structure of songs, while MusicBox

[51] tool offers the ability to select features for dynamically computing song sim-

ilarity and map songs in space as a result. Songrium [32] detects remixed tracks

published or shared on the web and embeds the visualization of relationships

with originals into a rich interactive interface. An intuitive, game-like naviga-

tion though 3D music landscape, enriched by aural experience of near-by songs

in Neptune [45] elicited positive reactions from users. More related to our work,

[22] and [25] additionally utilize visualizations to highlight recommended music,

thus providing a degree of transparency to the recommendation algorithm. On

the other hand, very few works attempt to visualize music dataset according to

listenting context or visualize changes of user preference over time. Following two

subsections present notable related research.

2.4.1 Visual Mood Models

Although mood-based music selection and recommendation are gaining pop-

ularity in both research and commercial settings, development of visual aids for
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mood information is still scarce. Nearly all existing mood based visualizations

are built upon Russell’s circumplex model of affect [71], derived from general re-

search in psychology. First presented in the 1980, this model is now commonly

used to represent emotions as a mixture of two dimensions, valence and arousal,

and position them in the coordinate system (Figure 2.1). Valence, the degree of

pleasure, ranges from positive to negative whereas arousal ranges from low to high

psychological activity. Yang et al. [89] incorporate it into their music retrieval

method, and commercial applications such as Habu6 and Musicovery7 use it as a

platform for music selection based on mood. Habu and Musicovery label axes as

Dark – Positive and Calm – Energetic, and position songs in space according to

the moods associated with them (Figures 2.2 and 2.3). Habu categorizes songs

from user’s personal collection into 25 grouped moods, or 100 granular moods,

mapped onto the emotion plot. Musicovery, on the other hand, positions songs

from an online music collection in the emotion plot without revealing specific,

associated mood words to the user.

However, it has been shown that many emotions cannot be uniquely char-

acterized by valence and arousal values [20]. For example, fear and anger, two

distinctive emotions, both have high arousal and negative valence, and are com-

monly placed close to each other in the circumplex model [74]. Similarly, disparate

moods, such as wistful/forlorn and casual groove, are found in close proximity in

the Habu visualizations. Furthermore, many mood words that we use to charac-

6http://habumusic.com
7http://musicovery.com
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Figure 2.1: Russel’s circumplex model of affect

terize music are not necessarily positive, negative, calm or energetic. Humorous,

eccentric and philosophical are just a few examples of such words found in Rovi8 -

a popular database of comprehensive, professionally curated music descriptors. It

is also important to note that models derived from general research in psychology,

such as Russell’s, may not be suitable for musical emotions. One reason being that

music, unlike other life events, does not have goal implications, and thus possibly

induces more contemplative range of emotions [91]. To address this problem, this

thesis proposes a novel visual representation of music specific moods, built upon

on a model derived from extensive psychological study by Zentner et al. [92].

8http://developer.rovicorp.com/docs
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Figure 2.2: Habu interface Figure 2.3: Musicovery interface

2.4.2 Visualizations of User’s Preference

User’s musical profile can be inferred from her listening history, which often

consists of stylistically different tracks, conveying a variety of moods. Therefore,

it would be difficult, and possibly undesirable to characterize a user with a narrow

set of music and mood descriptors. This is likely the reason most visualizations

of taste are elaborate, rather than concise, statistical representations of listening

history. Publicly available user data on Last.fm inspired many to build tools for

visualizing historical information. For instance, Baur et al. [6] plot artists on a

time scale, color coded by genres, such that listening patterns can be observed

throughout a day or over the years. Such visualizations reveal much about user’s

taste, but they do not aid the user in selection of music nor give greater control

of the recommendation. On the other hand, research in companies Spectralmind

and Gracenote resulted in a Spotify application Tasteclusters9, which personalizes

music based on taste and allows navigation using a graphic display (Figure 2.4).

9http://www.spectralmind.com/tag/music-visualization
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The listening history is analyzed and grouped based on moods and genres. The

results are intuitively arranged into personalized clusters, allowing the user to

choose music from available groups. Compared to these approaches, MoodPlay

models historical user preference by storing and displaying individual mood points,

created as user navigates though the mood space.

Figure 2.4: Tasteclusters interface
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Chapter 3

Music Specific Visual Mood

Model

3.1 Overview

After reviewing the background research in relevant areas, this chapter aims to

answer the first research question: How can metadata such as mood information

be visually represented in a music recommendation system? As previously stated,

to our knowledge, Russel’s Circumplex model of valence and arousal is the only

emotion model used to visually represent music artists and moods associated

with them. However, due to its shortcomings described in 2.4.1, this dissertation

proposes a novel approach to mapping artists and moods in the same space.
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Established music services use vocabularies of various sizes to describe moods

associated with different songs or artists. Songza1 categorizes music based on 20

moods pre-defined by music professionals, Habu2 uses 100 granular mood words

provided by curators as well, while Stereomood’s3 growing dictionary contains

over 100 words provided by users. Mood metadata is usually available on artist

level and differs across different publicly available services (music repositories).

Three most popular and widely used repositories in both commercial setting and

academic research are EchoNest4, Gracenote5 and Rovi6. Comparing to EchoNest

and Gracenote, Rovi offers the most comprehensive, professionally curated list of

mood descriptors (289 unique words). It houses data pertaining to 3.5 million

albums and comparable number of artists, most of which are tagged with a small

subset of different moods. It can be argued that one artist plays songs in different

moods and that mapping songs, rather than artists, in the mood space would yield

a more accurate representation of a music collection. However, using moods on the

artist level for the purpose of this research project has the following advantages:

• By visualizing artists, fewer data points are laid out in space, while it is

possible to provide alternative ways to access individual artist songs.

• Comprehensive metadata on artist level is available via public APIs, unlike

the metadata on song level.

1http://songza.com
2http://habumusic.com
3http://www.stereomood.com
4http://the.echonest.com
5http://www.gracenote.com
6http://www.rovicorp.com
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Rovi compensates for the fact that different artist songs have different moods by

assigning a variety of moods with different weights to artists. Therefore, moods

with the greatest weights are the most representative of the artist’s music. Given

these advantages, the visual model described in this chapter is developed using

Rovi database of moods on the artist level.

In order to build an easy to navigate structure around a large vocabulary

of mood words (N=289), a data analysis technique is first used to identify re-

lations between artists in a collection, based on the moods that describe them.

Correspondence analysis (Appendix A), an exploratory technique, is particularly

suitable for this task and results in a graphical representation of relations between

artists and moods, and moods themselves. Next, the moods are categorized in

order to reveal a hierarchical structure in the visual representation, by building

upon the research of Zentner et al. [92] who suggest that music emotions generally

fall into 3 main categories and 9 sub-categories, described by 45 emotion words.

Numerical methods, including calculation of word similarity in WordNet7, are

used to place each of the 289 Rovi moods into one of the 9 Zentner sub-categories.

As a result, the clusters of moods emerge in the space constructed by correspon-

dence analysis. Thus, the music collection can be explored using a top – down,

hierarchical approach, by focusing on one of the top 3 categories first, one of the

sub-categories next, and finally a specific set of moods.

7https://wordnet.princeton.edu
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Figure 3.1: Moods associated with artists Husky Rescue and Flunk. Common moods are
listed in the intersection of two circles.

3.2 Mapping Artist Mood Metadata to Music

Mood Model

Music mood metadata used in this study is obtained via Rovi API. Most of

the artists are described by 5-20 different moods which are weighted in order

to distinguish between more and less relevant ones. The value of using several

different moods to characterize an artist, and a need to create a mood map with

dimensions other than valence and arousal can be observed from the following

example.

3.2.1 Example Artist Comparison

Figure 3.1 shows moods associated with two artists, Husky Rescue and Flunk,

some of which are common for both. The combination of words gives us the

impression of their music, which is more encompassing than if it were based on

a single mood descriptor. On one hand, the comparison of two artists positioned
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in the commonly used Russel’s Circumplex model would be based on two criteria

only – valence and arousal. On the other hand, by simply glancing over the mood

words associated with Husky Rescue and Flunk, the similarities and differences

between the two artists become more vivid and meaningful. For example, both are

calm, but one is playful, sensual, lush and the other one melancholic, autumnal

and druggy. In order to keep similar level of expressiveness when comparing

large number of artists against each other, scales for comparison in addition, or

alternative to valence and arousal would be beneficial.

3.2.2 Construction of Visual Mood Map

Pilot study to construct a music related visual mood model was conducted on

a set of 3275 artists, randomly chosen from Million Song Dataset8. For each one of

the artists in the dataset, associated Rovi moods and their weights were collected

via Rovi API. As a result, each artist in the dataset is characterized by approx-

imately 5 to 20 weighted mood words and represented with a vector X ∈ R289,

where 289 is the number of unique moods available in the Rovi system. In order

to visualize inter-relationships between artists and moods in a two-dimensional

space, the first step is to apply a dimension reduction method. Given the categor-

ical nature of the data, eigenanalysis-based ordination approaches (e.g. Principal

Component Analysis - PCA, Correspondence Analysis - CA) are more suitable

than gradient based (e.g. Multidimensional Scaling - MDS). When choosing be-

8http://labrosa.ee.columbia.edu/millionsong
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tween commonly used techniques, PCA and CA, we opt for CA which allows us

to plot both moods and artists in space based on relative distribution of moods,

rather than on the exact mood weights for each artists.

While the resulting 2-D plots of moods and artists positioned in a coordinate

system reveal relations between data points, the meaning of these relations is dif-

ficult to interpret. The map of 289 mood points is unintelligible and the challenge

here is to detect axes or dimensions in it. Therefore, a small subset of 289 moods

that could fall on an introvert – extrovert scale was manually chosen with a goal

to explore possible clusters or infer the meaning of axes (Figure 3.2). By looking

at this subset in the mood space obtained by Correspondence Analysis, it can be

noticed that 3 mood groupings emerge, subjectively described as follows: (1) ag-

gressive, hostile (left), (2) mellow, meditative (top right) and (3) uplifting, playful

(bottom right). This suggests that relations between large number of moods in

the obtained map could be understood by categorizing moods into discrete sets,

thus possibly revealing a structure in the mood space.

For the purpose of identifying potential clusters in our mood space, we ex-

plore whether our visual map fits into a hierarchical music-specific emotion model

proposed by Zentner et al. [92]. This model, from now on referred to as Geneva

Emotional Music Scales or GEMS, consists of 3 main categories (Vitality, Uneasi-

ness, Sublimity), 9 sub-categories and 45 music relevant emotion words distributed

across different sub-categories. Figure 3.3 shows top two levels of this emotion
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Figure 3.2: Mood map constructed using correspondence analysis. Only moods that could be
placed on an introverted - extroverted scale are shown.

hierarchy. Our hypothesis was that such hierarchy should emerge in the visual

mood space built upon professionally curated artist-mood associations.

The approach taken to classify Rovi moods was to place each one of them in a

GEMS sub-category whose name is the most similar to the given Rovi mood (e.g.

mood exciting was placed in the sub-category Joyful Activation). GEMS sub-

categories contain 5 mood words on average, or 45 total. For example, emotions

in sub-category Wonder are happy, moved, allured, dazzled and amazed. The com-

putation of similarity between Rovi and GEMS moods was based on WordNet – a

large lexical database of English words, grouped into sets of cognitive synonyms.

WordNet module developed by Ted Pedersen9 offers a number of methods for

computing semantic similarity and relatedness between words. Three measures

9http://www.d.umn.edu/ tpederse/similarity.html
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Figure 3.3: Emotion hierarchy proposed by Zentner et al.

in particular are suitable and used in this study for the task of comparing mood

words in the form of adjectives: lesk, vector and vector pairs 10. The main idea

behind these three methods is that relatedness of words is derived from the degree

of overlap between word definitions i.e. unique representations of the underlying

concepts. After calculating pairwise similarity between Rovi and GEMS words

using all three measures, the obtained values were normalized using Z-Score. The

highest of three similarity values was chosen for each word as a representative

measure. Next, selected similarity values between each Rovi mood and Zentner

mood words on the lowest hierarchical level were averaged for each sub-category

separately, thus resulting in similarity values between each Rovi word and each

10http://www.d.umn.edu/ tpederse/Pubs/AAAI04PedersenT.pdf
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Figure 3.4: Histogram of similarity values between Rovi words and GEMS categories.

GEMS sub-category. Finally, Rovi moods were assigned a sub-category with the

highest similarity value.

3.2.3 Subjective Evaluation

The evaluation of the mood classification was performed by subjective obser-

vation. More rigorous approach would be beneficial in the future, but the obtained

results help lay the ground for the development of visual mood model. By looking

at a histogram of final similarity values used to categorize moods (Figure 3.4), we

notice that a large number of moods have low values. This means that the likeli-

hood they truly belong to the assigned category is low. Indeed, some Rovi words

did not fit into any of the GEMS sub-categories, and many were misclassified.

It is important to note that some of the Rovi moods are less frequently used to

describe artists and 23 out of 289 mood words were not associated with any of the

artists from our dataset. To verify that these 23 moods are indeed less relevant for

describing artists in general, usage frequency was computed for all 289 moods on
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additional data from Rovi database. Specifically, this additional data was collected

from web service AllMusic11, which is built upon Rovi database and recommends

to users the most representative albums and songs for each mood. The number

of suggested albums and songs was scraped from the web for all moods and it

was found that the average number of suggestions ranges from 1 to 55. The 23

moods not present in our dataset all had the average frequency below 17, and

19 of them (83%) had the frequency below 10. In comparison, 22% of all Rovi

moods have the average usage frequency below 17, and 14% the average below 10.

Given these numbers, Rovi moods not found in the dataset were discarded for the

purpose of placing Rovi moods to Zentner categoris. By subjective assessment, it

is estimated that only 35% of the 266 remaining moods were correctly categorized.

Although WordNet is the most comprehensive database of English words, with

the greatest number of tools available for analysis, calculated similarities between

words are based on their relatedness, and not strictly on synonymity. This has un-

desirable consequences to the outcome of mood classification. To illustrate with an

example, word volatile was found to be more closely related to word tender than

tense. As a result, it was placed to category Tenderness rather than Tension. Be-

cause of this, the categorization of moods using WordNet provides a good basis for

further research, but it should not be considered conclusive. Therefore, misclassi-

fied words were subjectively assigned categories they are more likely to belong to.

During this process it was found that 66 moods cannot be placed into any of the

11http://www.allmusic.com
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GEMS sub-categories, and due to the scarcity of research in classification of music

related moods, sub-categories were expanded to encompass uncategorized words.

Although some of the misclassified words may be descriptive accounts of music

rather than moods, the rational for expansion of GEMS sub-categories was to

remain consistent with the data source, used by other researchers as well [75, 50].

Specifically, it was found that out of 66 moods, 28 describe the feeling of unease,

and the remaining 38 pertain more to style of expression than to moods. There-

fore, top category Unease, containing sub-categories Tension and Sadness, was

supplemented with Fear, Lethargy and Repulsiveness. Descriptors that carry less

or no mood content (e.g. quirky, knotty, elegant) were placed into new, distinct,

top category Other, divided into sub-categories Stylistic, Cerebral and Mechanical.

The final breakdown of moods across different categories is summarized in Table

3.1.

The categorization of Rovi moods in the 2D space obtained by CA can be

observed in Figure 3.5. Three clusters indeed emerge, corresponding to three

GEMS top categories: Sublimity (green), Vitality (red) and Uneasy (brown). Al-

though there is slight overlap between the three clusters, the categorization offers a

good foundation for building mood based visualization of music collection. Moods

placed to the category Other (purple) are located mostly in the center of visualiza-

tion – they spread over Sublimity and Vitality, and to lesser extent over Unease.

This indicates that they are often used to describe artists along with more clearly

defined moods in GEMS categories. Having constructed a hierarchical, visual
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Figure 3.5: Map of mood space obtained using correspondence analysis. Moods are grouped
in categories Sublimity (green), Vitality (red) and Unease (brown).

Category Sub-category No. of moods Example moods Total

Sublimity Tenderness 24 Delicate, romantic, sweet 89

Peacefulness 22 Pastoral, relaxed, soothing

Wonder 24 Happy, light, springlike

Nostalgic 9 Dreamy, rustic, yearning

Transcendence 10 Atmospheric, spiritual, uplifting

Vitality Power 29 Ambitious, fierce, pulsing, intense 61

Joyful activation 32 Animated, fun, playful, exciting

Unease Tension 32 Nervous, harsh, rowdy, rebellious 78

Sadness 18 Austere, bittersweet, gloomy, tragic

Fear * 10 Spooky, nihilistic, ominous

Lethargy * 8 Languid, druggy, hypnotic

Repulsiveness * 10 Greasy, sleazy, trashy, irreverent

Other * Stylistic * 19 Graceful, slick, elegant, elaborate 38

Cerebral * 12 Detached, street-smart, ironic

Mechanical * 7 Crunchy, complex, knotty

Number of categorized moods 266

Table 3.1: Structure and description of MoodPlay mood hierarchy. Categories and
sub-categories marked with * are the expansions of the original GEMS model.
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Figure 3.6: Mood map depicting moods in three GEMS categories (green, red, brown) and a
new category Other (purple).

mood space, and shown that the results of our mood meta-data analysis align

with those from physiological studies, following chapters document the research

in the domain of interactive music recommendation.

Finally, as a demonstration of how artists can be compared across Zentner

categories, Table 3.2 lists categorized moods associated with two artists Husky

Rescue and Flunk, previously shown in Figure 3.1. Rows that correspond to sub-

categories unique to either of the artists are highlighted in different colors. It

can be observed that Husky Rescue is more filled with Wonder, Power and Joyful

Activation, while Flunk is more Nostalgic and Sad. If we compare these two artist

on the level of top-categories, we see the main difference is that Husky Rescue is

considered more Powerful and Flunk is more Uneasy.
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GEMS Category Husky Rescue moods Flunk moods

Wonder Playful, literate

Transcendence Lush Ethereal

Tenderness Sensual Innocent, delicate

Peacefulness

Nostalgia Wistful

Power Ambitious

Joyful Activation Sweet

Tension

Sadness Autumnal, melancholy, poignant, druggy

Table 3.2: Comparison of artists Husky Rescue and Flunk across nine GEMS categories.
First column contains mood categories, while second and third contain moods associated with
two artists. Rows in color highlight mood categories that distinguish between the two artists.
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Chapter 4

MoodPlay: Interactive Music

Recommender

Previous chapter introduced a novel, visual mood model, targeted towards

music specific moods. This chapter answers second research question of the thesis:

How can interaction, explanation and control be supported over a visualization of

artist - mood associations? The question is answered by designing and developing

an interactive, mood based music recommender – MoodPlay, with the visual mood

model as a central component.

4.1 System Overview

MoodPlay is a web application, currently available at http://haze.mat.

ucsb.edu/~ivana/recsys. It was developed in two stages. A preliminary user
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study was conducted using the first version (Chapter 6), and more thorough user

study (Chapter 7) was conducted using the second, slightly improved version.

Both versions have the same recommendation algorithm and similar interface

functionality. The main difference between the two is in the visual representa-

tion of mood hierarchy and the graphical design. This section describes a typical

use-case and interface design decisions, with reference to the final version of the

system.

4.1.1 Use Case

In a typical use-case, users enter the system via web browser, using a computer

or mobile device. At the beginning of the session they are given step by step usage

instructions and explanations of the numerous interface features. The instructions

can be accessed again any time during the session. Once the system is loaded,

users are presented with a three panel view, as shown in Figure 4.1, which reflects

three main operating phases: (1) profile building, (2) positioning the user within

a visual mood space, with the goal to facilitate transparency and control over

recommendations and (3) suggesting new artists using hybrid recommendations

over mood and audio content. A user can enter profile items on the left panel via

predictive text list that appears when any input is given. With every such profile

update, the system determines the overall mood associated with given artists and

instantly (re)positions the user avatar in the mood space visualization, shown in

the center panel. Simultaneously, the system updates a list of recommendations,
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Figure 4.1: Screenshot of MoodPlay interface, divided into three sections: (left) pane for
generating user profile by entering artist names, (center) mood-space visualization, (right)

recommendation list, along with slider for adjusting mood influence

shown in the right panel, based on a hybrid model of mood and audio content.

Artist data points are positioned within the mood space visualization. User can

explore the music collection by zooming, panning, clicking on artist nodes and

streaming music in real time. Furthermore, user can manually override their

position in the mood-space by moving the avatar. Provenance of previous positions

is maintained through a mechanism of interactive trails that can be modified or

removed if desired. The user can also control the ratio of audio content to mood

component in the hybrid recommendation algorithm via a slider that controls a

dynamic radius around the current avatar position.

42



4.2 User Interface

Visualization of mood space and artist positions within it is central to solving

the problem of navigation through music collection and explanation of recommen-

dations. Hence, it occupies the largest portion of the interface. The mood space

contains 266 moods visible to user, with similar moods appearing closer to each

other than dissimilar ones. In order to help the user understand the mood space

and navigate to desired areas, moods are organized in a hierarchy, having three

primary categories at the top - Vital, Sublime and Uneasy (Subsection 3.2.2).

This is portrayed on canvas by showing mood nodes in different categories in red,

blue and yellow colors respectively. Mood nodes are semi-transparent, their size is

equal and purposefully large enough to cause overlap. This produces an interplay

of colors, thus forming the space with gradual transitions between mood cate-

gories. Artists from the MoodPlay database are placed within the mood space

based on positions computed along multiple mood dimensions.

As described in Subsection 3.2.2, positions of moods and artists in space are

computed using Correspondence Analysis. However, data points obtained as a

result of the analysis were positively skewed for the final set of 4927 artists, more

so than the data points shown in Figure 3.6. For aesthetic reasons the data was

transformed to alleviate the skewness following the guidelines of [80] and [36]. The

transformation changes the distances between the data points but preserves the

order. Therefore, user’s understanding of relations between artists and moods,
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and the music recommendation algorithm were not negatively affected by the

transformation. Specific steps taken are as follows:

1. x coordinates were transformed using the formula:

xnew = log10(xold + c) (4.1)

where c equals to the absolute of minimum xold value, in this case 1.5.

2. Both x and y coordinates were transformed to range [-2, 2]

3. Sign was changed for y values

Finally, via the interface users can stream their music in real-time and see

additional artist information by clicking on the nodes, which are grey in color and

significantly smaller than mood nodes. In addition to common-place zooming and

panning actions in the visualization, interaction in mood-artist space is supported

by the features described in following sub-sections.

4.2.1 Mood Filtering

Mood hierarchy has been constructed to enable finding desired moods in a

visual map in a more efficient way than browsing a long list of mood words.

Such a design supports exploring music collection in a top-down manner, starting

from a top mood category (vital, sublime or uneasy) and then narrowing down

to sub-categories and specific moods. Figure 4.2 shows four different views of the
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Figure 4.2: Four views of mood space filtered by top categories: sublime moods (top left),
unclassified (top right), uneasy (bottom left), vital (bottom-right)

mood-artist space, filtered by top category. Furtermore, filtering by sub-categories

is exemplified in Figure 4.3 for Uneasy moods.

4.2.2 Dynamic Labeling

Showing labels for all visible moods in the mood space on lower zoom levels

(maximum 266) causes cognitive overload and affects user’s ability to find desired
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Figure 4.3: Four views of mood space filtered by top categories: sublime moods (top left),
unclassified (top right), uneasy (bottom left), vital (bottom-right)
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items. This problem is addressed by dynamically displaying labels for a subset of

moods, deemed to be dominant in the visible area. Mood dominance is directly

proportional to the number of artists tagged by it and the weights assigned. More

specifically, dominance based ranked list was computed by summing up weights for

individual moods across all artists, and then ordering them ascendingly. On each

zoom level the system shows labels for up to 36 moods total, or 9 most prominent

moods per category (number of labels is chosen by informal experimentation).

This significantly unclutters the space at lower zoom levels when most of the

moods space is visible. At the highest zoom level less than 36 moods are visible,

and in that case all of the labels are displayed.

4.2.3 Artist Information

Being able to hear artists’ music is a necessary component of a music recom-

mendation system. Upon clicking on the artist node in the visualization, an info

box is displayed, showing artist picture, link to Last.fm profile, and an audio play

button (Figure 4.4). Artist list in the recommendation pane contains the same el-

ements. Clicking the play button starts streaming of 30 seconds excerpts of songs

from a randomly selected album.

Ordered list of recommended artists is displayed in the right-most panel (Fig-

ure 4.1-right) and the corresponding artist nodes are highlighted in the mood

space. Items in the recommendation list are linked to audio streams and to Last.fm

profiles of artists. For each recommended artist the system also displays artist’s
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Figure 4.4: Artist information box,
displayed upon clicking on an artist node

in the visualization.

Figure 4.5: Item in the recommendation
list, containing artist information.

picture, color of the top mood category (red, blue or yellow) and the name of the

sub-category the artist belongs to, with the goal to help users gain some under-

standing of the music upon visual inspection (Figure 4.5). As users interact with

the system, recommendation list is being updated. Up and down arrows next

to the artist name inform the user that the item changed the position after the

interaction, while star means the item is new. Rating of recommended items is

enabled for the purpose of user study, and is achieved by clicking on one of the

five stars below artist names.

4.2.4 Trail of User Mood Preferences

Adaptivity of music recommenders is particularly important due to the dy-

namic nature of listening context [79]. Keeping this in mind, the gradual change

of user’s preference is modeled by enabling the movement of avatar in latent mood

space and maintaining the array of trail marks, weighted by distance from the cur-

rent position (Figure 4.6). As user navigates away from the initial position, the

mood information associated with each trail mark is incorporated into the recom-

mendation algorithm. Trails can be modified or deleted entirely.
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Figure 4.6: User trail containing three marks - one at the original user position calculated
based on the profile, and two at new positions selected by user. Recommended artists are

highlighted in pink.

4.2.5 Controlling Mood Influence

Finally, fine-tuning of recommendations is further supported by controlling

the hybridization of recommendation process. The recommendation approach ac-

counts for the fact that mood based similarity between artists does not necessarily

match audio based similarity (e.g. techno and punk artists are both energetic, but

they do not sound similar). Rather than using fixed, predefined settings, we allow

user to adjust the mood influence in the recommendation algorithm via a slider

control. The weaker the mood influence, the more we rely on audio similarity

to calculate recommendations, and vice-versa. This is visualized though a novel

radius-based interaction that dynamically re-sizes a catchment area around the

current avatar position, as shown in Figure 4.7-left and 4.7-right respectively.
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Figure 4.7: The effect of adjusting mood influence using a slider control. Left - narrow mood
selection, Right - wide mood selection

4.3 System Implementation

Client side of the MoodPlay web application was developed using JavaScript

and D3.js library for visualization and canvas interaction (e.g. dragging, zooming,

filtering). User data and most of the artist data are stored in a Mongo database

on the application server. The application also interacts with several external

servers that host public music databases, in real time, in order to pull additional

artist information per user request.

4.3.1 System Architecture

MoodPlay uses diverse metadata which is collected from different sources,

mostly through public Web APIs, and therefore requires a special architectural

design. In addition, recommendations have to be computed very quickly, since

many types of user interactions refresh the recommendation list several times per

session.
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The system architecture has two main components as depicted in Figure 4.8:

one for building the library of items with their metadata (Dataset Construction)

and a second component that generates user recommendations (Recommendation

framework). Following subsections describe the architecture design and imple-

mentation in detail.

Music	  bands	  DB	  
with	  	  

Mood	  &	  
Content	  
Features	  

(1) Dataset Construction 
 

(2) Recommendation Framework 
 

(2.1) Off-line Computations 
 

(2.2) On-line Computations 
 

ar6st_1	  
ar6st_2	  
…	  
ar6st_n	  

Echonest	  
Web	  Service	  
(ar6sts’	  data)	  

Rovi	  	  
Web	  Service	  

(ar6sts’	  moods)	  

Artist List 
Artists’ similarity 

matrix KD Tree 

Moodplay	  
interface	  

RecSys	  

User 

Figure 4.8: MoodPlay system architecture indicating the modules for: (1) dataset
construction and (2) recommendation, which is divided in the component for (2.1) off-line

computation and (2.2) online computations made at the moment the user interact with the
system.

4.3.2 Dataset and Data Sources

MoodPlay relies on a static music dataset of 4927 artists, obtained in several

iterations, which can be seen at the center of Figure 4.8. First, 3275 artists were

randomly selected from a subset of the Million Songs Dataset 1. Artists ranged

from very popular to less known, and played music in a variety of genres and

over different decades. The pool was then expanded by 2,000 most familiar and

1http://labrosa.ee.columbia.edu/millionsong/pages/getting-dataset#subset
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hotttest artists from the public EchoNest2 database. Familiarity and hotttness

metrics are EchoNest numerical estimations of how known and popular given

artist is in the world. The decision to complement the initial set of randomly

chosen artists with the popular ones was made to better facilitate an online user

study with participants of different ages from different parts of the world. Finally,

artists for which we were not able to obtain mood or song data were discarded.

In addition to the list of artists, we needed to collect metadata since the

computation of the visual space and recommendations is based on mood and

audio data associated with artists. Mood data for each artist was obtained via

Rovi3 API. Artist positions in the mood space were pre-computed (Section3.2) and

are loaded from database at application start time. Furthermore, top ten most

popular songs for each artist and corresponding audio analysis data was obtained

from EchoNest4. Different interpretations of the same song, having an exact

same title in EchoNest database were discarded. Music streaming in MoodPlay

is accomplished by sending a request to Rdio5 API with the Rdio artist ID as a

parameter. Finally, MoodPlay interface offers artist picture and link to an external

profile, both obtained from Last.fm6. Description and sources of artist data are

summarized in table 4.1.

2http://developer.echonest.com/docs/v4/artist.html
3http://developer.rovicorp.com/io-docs
4http://developer.echonest.com/docs/v4/song.html
5http://www.rdio.com/developers
6http://www.last.fm/api/intro
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Field name Description Source

ID Artist ID -

Name Artist name -

Moods Weighted moods associated with artist Rovi

Position Artist position in mood space Computed based on mood data

Top category Top mood category calculated based on assigned moods Computed based on mood data

Sub-category Mood sub-category calculated based on assigned moods Computed based on mood data

Songs Audio analysis of ten most popular songs EchoNest

Picture Artist’s picture Last.fm

External profile Link to artist’s profile on Last.fm Last.fm

Streaming data Rdio album ID used for streaming music Rdio

Table 4.1: MoodPlay artist data

4.4 Recommendation Approaches

The main database of our system stores artists’ information with audio content

and mood features, and we use both categories of features to produce recommen-

dations in two steps: off-line computation of artists’ similarity based on audio

data, and online computation of recommendations based on a cascading process

of mood and audio content filtering. We take such hybrid approach for suggesting

new artists in order to alleviate disadvantages of individual algorithms.

Online component returns the recommendations to the user while interacting

with the interface. This component is a hybrid cascading recommender [14], dia-

grammed in Figure 4.9, which operates in two stages: (1) using the user profile as

an input, our system produces a first candidate set of recommendations based on

mood similarity, and (2) the output of the first recommender is the input to an

audio content-based recommender, which re-ranks the artists and produces the

final recommendation list. This layered approach, along with the related interface
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Figure 4.9: Schematic representation of our hybrid, cascading recommender, which pre-filters
artists based on mood similarity and then post-filters based on audio content.

components, supports our goal to help user understand how recommendations are

generated while navigating mood space. Next, we describe the algorithms in more

detail.

Offline computation of artist similarity. Artists’ pairwise similarity,

based on mood and audio content, is calculated offline and stored in two separate

data structures. Mood based similarity between any two artists is a function of

their Euclidean distance in the mood space (produced by Correspondence anal-

ysis, see section 3.2.2). To find audio based similarity, we obtain audio analysis

data for representative songs of each artists and use a variance of nearest-neighbor

retrieval algorithm to generate artist similarity map.

Top 10 most popular songs for each artist in our database were identified via

Echonest API. Audio analysis data for resulting 49,270 songs was obtained from

the same source. We used timbre, tempo, loudness and key confidence attributes,

which amounted to approximately 10,000 numerical values per song. In order to

make the similarity calculations efficient, we represent each song with a vector

vi ∈ R515 [55] and build artist data into a KD-tree [7]. Finally, an accelerated

approach for nearest-neighbor retrieval that uses maximum-variance KD-tree data

structure was used to compute similarity between songs, since it is has a good
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balance of accuracy, scale and efficiency [55]. In this way, time complexity of

constructing a similarity matrix was reduced from O(n2) to O(n log n), while the

search for the K nearest neighbors of a given artist is reduced from O(K · n) to

O(K · log n).

Specifically, to find a ranked list of similar artists for a given artist, first, for

each one of the artist songs (10 total) we rank all other songs from the dataset from

most to least similar. Next, we get song authors and calculate average similarity

rank for each one. Finally, we obtain a similarity matrix by repeating these steps

for each one of 4,927 artists [17]. Details of the algorithm are in Algorithm 1.

Online recommendation. During a user session, MoodPlay recommends

new artists similar to the artists the user enters into the system. First step in the

process is to determine a user’s overall mood based on the profile. This is achieved

by locating given artists in the mood space and calculating the centroid of their

positions, where we then position the user. Artists found in the surrounding area

are all potential candidates for recommendation because they are considered to

reflect moods derived from the user’s input. The size of the surrounding area is set

to a default value, and expandable by user. Among potential candidates, we select

ten most similar to the user profile based on pre-computed audio similarity data,

order them by distance from user position and display as recommended artists

(Algorithm 2).
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Algorithm 1 Algorithm for computation of audio similarity
Input:

Set of artists: A = {a1, a2, ..., an}
Set of songs for all artists: S = {Sa1 ∪ Sa2 ∪ ... ∪ San}

Output: Audio similarity ranks: ARanks = {ai → {aj → rankij}}
1: function ComputeAudioSimilarityRanks
2: ARanks = {} . dictionary of artist similarity ranks
3: for each artist ai in A do
4: SRanks = {} . dictionary of song similarity ranks
5: for each song sk in Sai do
6: SRanks[sk] = ComputeSimilarityMapOfSongRanks(sk, S)
7: end for
8: for each artist aj in A do
9: ARanks[ai][aj ] = ComputeAverageSongSimilarity(SRanks, Saj)

10: end for
11: end for
12: return ARanks
13: end function

14: function ComputeSimilarityMapOfSongRanks(s, S)
15: Rank all songs from S based on audio similarity to song s
16: for each sj in S do
17: similarityMapOfSongRanks[sj ] = rankj
18: end for
19: return similarityMapOfSongRanks
20: end function

21: function ComputeAverageSongSimilarity(SRanks, Sa)
22: average = 0
23: for each song si in Sa do
24: for each song sj in SRanks.keys do
25: average += SRanks[sj ][si]
26: end for
27: end for
28: average = average / (Sa.size + SRanks.size)
29: return average
30: end function

Furthermore, we allow user to move in the mood space and thus obtain new

recommendations that account for the mood change. We propose a novel, adap-

tive, recommendation approach, where we keep track of each new position and

apply a decay function to the preference trail when recommending new artists.

Assuming that the latest user position is the most relevant to user at a given

moment, we assign the greatest weight to the recommendations from the latest
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trail mark. The weights decrease as a function of hop distance from the end of

the trail. Pseudocode for the trail based recommendation algorithm is given in

Algorithm 3, and here we outline the steps:

1. At each trail mark, calculate ten recommended artists using the hybrid

method described above.

2. At each trail mark, scale distances between chosen artists and the trail mark

as if the recommendation radius was minimal. We do this because radius

can vary among trail marks. To produce the final recommendation list we

sort all potential candidates based on the distance from their respective

mark. Distances are scaled down to ensure the items are not too far from

the respective trail mark.

3. For each artist, at trail mark i (i = 0: initial user position) the adjusted

distance:

Da = D + ∆× (n− 1− i) (4.2)

where Da stands for adjusted distance, D is the original distance, n is the

total number of trail marks and i is the trail mark number. We obtain

empirically the weight constant by using the following formula:

∆ = rmin/4 (4.3)
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where rmin is the minimal recommendation radius. The higher the ∆ value,

the steeper the decay function is.

4. Combine all potential recommendation items from each trail mark (10 per

trail mark) and sort them by adjusted distances. Pick top 5 artists from

this sorted list, and recommend them to user.

Algorithm 2 Mood and Content-based Hybrid Recommendation
Input:

Artists in user profile: P = {a1, ..., an}
User position: Profile based position u = Centroid(a1, ..., an), ai ∈ P or a position from
user’s trail u ∈ T = {u1, ..., un}
Recommendation radius: r
Audio similarity ranks: ARanks = {ai → {aj → rankij}}
Number of recommendations: nrec

Output:
Recommended artists: R = {a1, ..., an}

1: function RecommendMusic(u)
2: M = [] . artists within mood radius
3: for ai in A− P do
4: if distance(ai, u) < r then M[i] = ai
5: end if
6: end for
7: H = {} . dict. of artists & similarity with P
8: for ai in M do
9: H[ai] = AverageSimRanking(ai, P )

10: end for
11: sort(H) . sort artists by audio similarity
12: R = H[1..nrec]
13: return R
14: end function

15: function AverageSimRanking(a, P )
16: average = 0
17: for each ai in P do
18: average += ARanks[a][ai]
19: end for
20: return average ÷P.size
21: end function
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Algorithm 3 Hybrid Recommendation with Provenance Trails.
Input:

Trail of user positions: T = {u1, u2, ..., un}, where u1 is profile based position and consecutive
ui are positions that user navigated to
Current recommendation radius: r
Minimum recommendation radius: rmin

Number of recommendations: nrec
Output:

Recommended artists: R = {a1, ..., an}
1: function RecommendMusicBasedOnTrail
2: R = {} . dict. of recommended artists
3: ∆ = rmin/4
4: for ui in T do
5: for aj in RecommendMusic(ui) do
6: ds = Scale(distance(ui, aj), r, rmin)
7: da = ds + ∆× (T.size− 1− i)
8: R[aj ] = da
9: end for

10: end for
11: sort(R) . sort artists in R by da
12: return R[1..nrec]
13: end function

14: function Scale(d, r, rmin)
15: dc = Convert d from range [0, r] to [0, rmin]
16: return dc
17: end function
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Chapter 5

Evaluation

Evaluating recommender systems that contain interactive components is par-

ticularly challenging because of complex and potentially diverse interplay between

the human participant and the automated algorithm. While the longitudinal study

with real world users would be ideal, we believe that an crowdsourced study using

Amazon Mechanical Turk1 (MT) is a reasonable surrogate. There is a large body

of research showing that a crowdsourcing platform like MT or CrowdFlower2 can

provide concrete and reliable results when evaluating higher complexity tools like

MoodPlay. Many recent papers at top scientific conferences use MT to evaluate

systems far beyond basic aspects [46, 11, 72, 43] and detailed comparison of ex-

perimental research in the lab setting versus using MT is presented in [9, 60, 13].

The main advantages of using MT to analyze different interaction patterns with

the MoodPlay recommender are as follows:

1https://www.mturk.com
2http://www.crowdflower.com/
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Effortless access to a diverse population sample. Participants live in differ-

ent countries, belong to different age groups and have different education

backgrounds.

Scalability. Depending on the complexity of a study and compensation, it

is reasonable to expect over 50 people participating in an experiment in one

day.

On the other hand, following are some of the limitations and the approaches

taken to minimize negative effects:

Lack of control. Comparing to lab studies, during MT studies there is signif-

icantly less control over participants environments. However, we minimized

the negative consequences by filtering out the participants that did not meet

threshold interaction and attention requirements.

Low motivation. As reported in [60], MT participants are less motivated

than those completing lab studies. Nevertheless, in our study participants

spent 20 minutes on average and left very detailed, thoughtful text comments

and feedback, showing that they were mentally engaged with the system.

5.1 Hypotheses

MoodPlay system was developed in two phases and evaluated through two

user studies having a similar format. The specific setup details and results of
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both studies are reported in separate sections, but first we describe the hypoth-

esis, common structure of the experiments and measures. Previous chapters pre-

sented the development of music specific, visual mood model and an interactive

music recommender. The studies detailed in this chapter were designed to address

research questions pertaining to the proposed visualization and recommendation

system.

Research question: What are the effects of proposed interactive visualiza-

tions on the user experience with a recommender system?

Hypothesis: The expectation is that the interactive, controllable interface

will improve several aspects of user experience. For example, the ability to nav-

igate the mood space and to control the recommendation process should help

users to find desired artists and increase recommendation accuracy. The number

of interactive features introduces significant complexity and the acceptance among

users is difficult to predict. Yet, the experiments measure the effect of complexity

on users’ experience. Overall, the expectation is that the proposed interface would

make music listening and discovery more enjoyable than music recommendations

in the form of ordered lists.

Research question: How does knowledge of and interaction with mood meta-

data influence recommendation accuracy and user experience?

Hypothesis: The explanation of moods related to profile artists and rec-

ommendations should increase users’ high-level understanding of the underlying

recommendation method. The interaction with mood metadata should further
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support this understanding and help user guide the recommendation system in

a desired direction. It is expected that this will result in increased trust and

recommendation accuracy. Finally, interaction with mood metadata should also

increase the recommendation diversity, as users are able to explore the music

collection through the mood space.

5.2 Study Setup

Participants accepted the study on Mechanical Turk and were redirected to a

Qualtrics3 pre-study survey with demographic and propensity related questions

(Appendix B). Following this, they were assigned to one of the four random exper-

imental conditions, as shown in Table 5.1, and performed the main task. Finally,

participants gave qualitative feedback in a post-study survey, also administered

through the Qualtrics platform.

The conditions have increasing visual and interaction complexity. Condition 1,

that allows users only to enter profile items and see an ordered list of recommended

items serves as a benchmark, against which other, more complex conditions are

compared. Condition 2 is also based on a preexisting user profile, but displays the

static visualization of mood space and highlights the recommendations within it.

Conditions 3 and 4, have the same features as previous conditions, but also allow

for user input to the algorithm at recommendation time through interaction with

3http://www.qualtrics.com
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Condition

Feature 1 2 3 4

Profile generation x x x x

Ordered list of recommendations x x x x

Display of latent mood space x x x

Navigation in latent mood space x x

Hybridization control x x

Trail based recommendations x

Table 5.1: Availability of different features per experimental condition. Last row in the table
shows number of valid subjects in each condition.

the mood visualization. Figure 4.1 shows the full system, as tested in condition

4.

During the main task, participants were given step by step instructions in the

form of interactive MoodPlay system tutorial. They were asked to enter at least

three profile items (music bands) from a drop-down list. In all conditions, this

profile was used to generate a list of 5 recommendations, that were shown on the

right side of the screen. Ratings were collected for the recommendation list as a

whole and for individual items in the list. Participants were then allowed to in-

teract freely with the system and generate as many intermediate recommendation

lists as they wished. Once satisfied, they again rated the full list of items prior

to finishing the MoodPlay interaction task. Finally, participants gave qualitative

feedback in a post-study survey, also administered through the Qualtrics platform.

The effect of interactive visualizations and knowledge of mood metadata on

user experience was evaluated using objective and subjective measures. Following
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lists give an overview of measures, while the detailed lists of actions tracked and

pre-survey and post-survey questions can be found in Appendix ??.

Objective measures are mostly derived from tracking user interactions with

the interface:

• List of artists added and removed from the profile

• Ratings of recommended items and recommendation list as a whole (predic-

tive accuracy of the recommendation algorithm)

• List of artists that user played during the session

• List of artists user clicked on to see their Last.fm profile

• Number and positions of added and removed trail marks

• Total mouse movement distances

• Time spent during the session

Subjective measures are derived from asking participants to answer questions

about their experience with the system. The questions were designed to evaluate

user’s perceived:

• Recommendation accuracy

• Trust in the recommendations

• Diversity of recommendations
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• Understanding of the recommendations

• Understanding of the interface

• Ease of use

• Overall satisfaction

Many of the listed measures are correlated, but the difference and relation

between recommendation accuracy and user’s trust in the recommendations in

particular need further elaboration. Objectively, predictive recommendation ac-

curacy was measured by collecting ratings of recommended items provided by

users. On the other hand, we also measured perceived recommendation accuracy

through a post survey question. The main difference between these two measures

is in their granularity. Users provide ratings for individual items and recommenda-

tion lists as a whole during the evaluation session. While providing such ratings,

users are most likely concerned with how well the recommended items satisfy

their current need and expectations. In MoodPlay, the rating depends on factors

such as perceived match in mood metadata, genre similarity to user’s profile and

possibly serendipity. Perceived accuracy measured at the end of the session re-

flects the overall impression of algorithmic accuracy, influenced by factors such as

explanations and sense of control over recommendations during the session as a

whole.

Trust in the recommendation system is heavily influenced by recommendation

accuracy. It is built over time and depends on the user’s understanding of the
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recommendation process, among other factors. For example, Buczak et al. [12]

noticed that users thought their recommender was defective after suggesting un-

known TV shows. Hence, they particularly focused on developing a ”trust build-

ing” mechanism. In addition to recommendation accuracy, MoodPlay has several

features that are expected to increase users’ trust, most important of which are

visualization and explanation of mood space and control over recommendations.
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Chapter 6

Preliminary Study

The first formal evaluation of the system was conducted after several informal

lab studies and one small MT pilot study. This chapter describes the study

design and setup and presents results in three areas. First, we describe a user

interaction and perception analysis, followed by a more holistic system evaluation

using a structural equation model. Finally, an in-depth analysis of three important

dimensions –trust, interaction degree and cognitive load.

6.1 Setup Details

Preliminary study was conducted on the first version of MoodPlay system

(Figure 6.1). Comparing to the final version of the system described in Chapter

4, the first version differed in the following ways: (1) mood nodes were signif-

icantly smaller, and the distinction three top mood categories were highlighted
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Figure 6.1: First version of MoodPlay interface

with Venn diagrams in different colors, (2) music streaming was not directly avail-

able. Instead, users had to visit artists’ Last.fm profile and play their music and

(3) artist information boxes were not available upon clicking on artist nodes in

the visualization.

The study setup was as described in the section 5.2, with the additional speci-

ficity. Users were required to rate each recommendation list as a whole and at

least first two items in it during the session. As we found out after the study, this

had a limiting effect on users, as they were not able to interact freely with the

system without rating recommendations after each action.

69



6.2 Participants

In total, 397 participants took the study. After filtering out users we didn’t

deem as valid because of incorrectly answering attention check questions in the

survey or answering all the survey items with the same value we ended up with

240 validated users. The distribution of users from conditions 1 to 4 was: 68, 60,

51 and 61. Studies lasted an average of 25 minutes and participants were paid a

fixed amount of $1.30 per study. Participant age ranged from 18 to 65 with an

average range of 25-30. 57% were male. 44% had a four year college degree, and

6% had High School or less. 66% were familiar with data visualization; 77% used

a mouse for the interactive study and 19% had a trackpad. When asked about

music tastes, 80% said they listen to music frequently. Reported use of streaming

services such as Pandora was normally distributed. 40% of participants reported

that they preferred popular music, while 6% reported that they had esoteric music

taste. Participants were asked an indirect question to assess trust propensity and

behavior. The results were approximately evenly distributed across low, medium

and high trust bins. During the design stage of this experiment, approximately 10

informal lab-based studies were also conducted and participants were interviewed

to gauge their experiences with the system.
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6.3 Limitations

During the study setup, a computational error was made during the indexing

of artists and their positioning in the mood space. This resulted in a number of

the artists being assigned to incorrect mood meta-data. In particular the error

affected 37% of the artists significantly. The consequence of this error was that the

first step in the hybrid recommendation phase –prediction of artists with similar

mood, contained some noise. However, the second step, which is based on content

features, was unaffected by the error. Accordingly, we focus our evaluation on user

characteristics, interaction and experience, and place less attention on ratings-

based analyses. A follow-up experiment is underway with a corrected model to

assess these aspects in detail.

6.4 User Interaction

For each participant, we examined the difference in ratings between the first

and final recommendation lists. To recap, the initial list is generated based on the

user profile only. Subsequent lists are influenced by user interactions in the UI,

for conditions 2-4. Figure 6.2 shows a breakdown of this rating shift by condition.

The first two columns show the interactive conditions, and there is a significant

improvement in mean ratings compared to the static conditions. The difference

is approximately half a star on the the 5 point Likert scale. A one-way ANOVA

and post-hoc test revealed that this difference was significant at p=4.15E-11. This
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result shows that interaction in the mood space has a positive influence on ratings.

We believe that this result can be more pronounced when data in a user profile is

stale. In this particular study, user profile data was provided at the beginning of

the recommendation session.

Figure 6.2: Mean rating shift between first list and last list rated, grouped by experimental
condition. ANOVA shows differences are significant at p < 0.05

Conditions 1-4 in this experiment have increasing visual and interactive com-

plexity. In order to understand the cost of the observed improvement in rating

accuracy, an analysis of the time spent in the recommendation session was per-

formed for each condition. Figure 6.3 shows the results of this analysis. In con-

ditions 1 and 2, sessions lasted about 6 minutes on average, while in conditions 3

and 4, sessions averaged about 8 minutes.
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Figure 6.3: Total time spent in the recommendation session for each condition.

6.5 User Perception

Recently, researchers in recommender systems are recognising the importance

of user experience in addition to traditional success metrics such as predictive

accuracy and diversity. In this experiment, a large amount of qualitative data was

collected in order to explore variations in user experience across the 4 experimental

conditions. Figure 6.4 shows a small sample of these results for the full treatment

condition. The figure shows results of mean agreement with a set of statments

in the post study. Agreement was reported on a percentage scale. Examples of

questions are as follows:

• Q DIVERSE The recommendations were diverse

• Q ACCURATE The system gave me accurate recommendations

• Q FUN The system was fun to use

• Q TRUST I trusted recommendations from the system

Analysis was also performed across the different conditions. In general, the

two interactive conditions (described in 3 and 4 of Table 5.1) showed a small
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improvement over the other conditions along most dimensions. Of particular note

is that both 3 and 4 showed a large ( 40%) increase in engagement with the

recommender system, measured by total interactions over all control elements.

0	 10	 20	 30	 40	 50	 60	 70	

Q_TRUST	

Q_INTX_LIFT_SAT	

Q_INTF_UNDERSTAND_RECS	

Q_INTF_CONFUSING	
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Q_TUTORIAL_EXPLAIN	

Q_UNDERSTAND_MOOD	

Q_CONTROL	

Q_RECOMM_FRIENDS	

Q_FUN	

Q_EASY	

Q_ACCURATE	

Q_DIVERSE	

Mean	Agreement,	Percentage	Scale	

Figure 6.4: Sample of collected user experience metrics from post study for the full feature
treatment (condition 4).

6.6 Structural Model

Since the MoodPlay system combines a recommendation algorithm, an inter-

active interface and subjective experiences of participants in the experiment, there

are many variables that interact with each other. To study these interactions, sev-

eral structural equation models [46] were tested over the personal characteristics

of users from the pre-study; objective system aspects that were controlled in each

condition; subjective aspects from the post study questionnaires and observed de-

pendent variables from analysis of the system log data. Figure 6.5 shows the result

of one such model with a reasonable fit to the data (X2(240) = 190, p < 0.05).

In this representation, edge thickness highlights the stronger effect sizes and val-
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Figure 6.5: Structural equation model for variables in the experimental data, computed using
Onyx. Significance levels are ’***’ p<.001, ’**’ p<.01, ’ns’ p>0.05. All factors in the model

have been scaled to have a standard deviation of 1. Arrows are directed and edge values
represent β co-efficients of the effect.

ues can be positive or negative, indicating effect direction. Notably, trust (both

propensity and perceptive trust) plays an important role in how users perceive

and understand recommendations. Visualization of the latent space causes an im-

provement in perceived accuracy. Gender influences degree of interaction, while

participant age was more likely to influence the total time spent in the system,

with older people spending more time on their interactions.

6.7 Interaction and Trust

Previous studies on recommender systems have shown a relation between the

inherent user’s propensity to trust and its final perception of the system [63, 46,

47]. Considering those previous results and the relations we have found in the

structural model, we dug deeper into how trusting propensity and the interface
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itself affect the final perceived trust of the user. During the experiment, sub-

jects answered a question in the pre-study survey measuring trusting propensity,

trust propensityu, and a question in the post-study survey assessing their percep-

tion of trust while using the system, post trustu. We calculated the Trust gain of

a user as a ratio Trust gain ratio = post trustu
trust propensityu

and we compared this metric

across different conditions, as shown in Figure 6.6. As an example, if a user had a

trust gain ratio of 1.2, it implies that her perception of trust with the system in-

creased by 20% with respect to her trusting propensity; while a value of 0.9 implies

a decrease by 10% in trust. To summarize the results, Figure 6.6 has two plots, at

the bottom four scatter plots showing for each user (each dot) the trust gain ratio

(x axis) and the initial trusting propensity (y axis). We highlighted with a box in

each condition the users (dots) with a gain larger than 1.5 and a trusting propen-

sity smaller than 0.3. The only condition that shows very few users with gains

in that area is condition 1 (5.8% of subjects), which had no latent mood space

visualization, compared to conditions 2 (16.6%), 3(15.7%) and 4(18%). The other

conditions had a considerable amount of users with trust gain ratios up to 100%

(Trust gain = 2.0). In addition, the upper plot in Figure 6.6 shows the marginal

distribution of Trust gain ratio per condition, and the only one showing a clear

peak below 1.0 is condition 1. Although more analysis is needed to make this

finding more conclusive, these results are in line with the aforementioned studies

on user controllability in recommender systems and indicate that the visualization

had an impact on increasing user trust on the recommendations.
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Figure 6.6: Trust gain ratio among different conditions. The red squares at the bottom-right
corner of each plot highlight that only the conditions with latent mood space visualization (2, 3
and 4) obtained a considerable trust gain ratio in users with a low trusting propensity (< 0.3),
implying that the visualization has an effect on the perceived trust over the recommendations.

The upper plots show the marginal trust gain ratio distributions per condition.

6.8 How much Interaction?

Past studies have shown that although more interaction improves the user

satisfaction with the system in general, this effect is mediated by personal char-

acteristics such as trusting propensity, familiarity with the domain and language

command [46, 47]. In addition, Hijikata et al. [35] and Parra et al. [63] have

tried to go beyond in order to understand how much interaction and control is

enough for the user before facing cognitive strain. Albers [1] states that learning

new interactions requires additional work and remembering, and users prefer to

optimize their cognitive resources instead of maximizing their work output. In

our study, we observed an important effect relating amount of interactive features

on the interfaces and user’s perception of understanding them. Figure 6.7 shows
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the distribution of answers to the question in the post-study survey The system

helped me understand and compare moods of different artists.
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Figure 6.7: Distribution of raw agreement scores of study subjects with the question about
perceived understandability on the system.

In the figure, the dashed line represents the median of the agreement with the

statement, and it is clear that in conditions with the latent mood space visualiza-

tion (2, 3, and 4) the agreement is larger than in the condition without it. Since

the distributions depart from normality, we conducted a non-parametric Wilcoxon

test rather than a t-test and we found that the agreement with the statement is

significantly smaller in condition 1 than in condition 2, W = 2389, p = 0.019.

This agreement is not significantly different among any of the other conditions.

Another question in the post-study asked subjects about how confusing was the

interface. Condition 1 was perceived, as expected, significantly less confusing than

the other three interfaces. Now, condition 2 and 3 were not perceived significantly

different in this item (Wilcoxon test, W = 1472.5, p = 0.85), whereas condition 4

was actually perceived as significantly more confusing more condition 2 (Wilcoxon

test, W = 1417, p = 0.04), which only adds trails with respect to the interactive

features of condition 3.
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Notable, these results might indicate that for understandability of the system

as a whole, a holistic interactive visualization, such as our proposed latent mood

space, might promote user understanding of the system by allowing exploration

even without facilitating specific aid for personalized exploration as in conditions

3 and 4. Now, adding a user avatar to personalize the user exploration adds some

cognitive strain but it is still well managed by users. However, the complexity of

adding trails significantly increases the user perception that the interface becomes

too difficult to utilize effectively as an information filtering system.
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Chapter 7

Comprehensive Study

7.1 Setup Details

MoodPlay system has been developed in two stages. The evaluation of the

first version of the system is presented in the previous chapter and the second

study described here was conducted on the final version, described in Chapter 4.

Comparing to the first version, we improved graphical design and several interface

features based the user feedback. Mood space visualization has been updated to

show smoother transition between mood categories, we added music streaming

and enabled access to artist information by clicking on artist nodes. Several

modifications were made to improve the experiment design as well – we gave users

more freedom to naturally interact with the system and we tracked additional

interaction metrics. Finally, in the previous study we focused the evaluation

on user characteristics, interaction and experience, and placed less attention on
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ratings-based analysis. Here we describe the modified experiment, conducted

with an entirely new set of participants, report the results of both quantitative

and qualitative analysis and address impact of mood based interactions on user

experience.

The following sections describe the results of our user experiment (N=398,

before filtering, N=279 after). We first describe participants, and follow with a

discussion of results on interaction, ratings, mood and user experience metrics.

7.2 Participants

In total, 398 participants took the study, equally distributed across all 4 condi-

tions. Here we report the user participant statistics for 279 users who completed

valid sessions. The distribution of users from conditions 1 to 4 was: 70, 69, 70

and 70. Studies lasted an average of 20 minutes and participants were paid an

amount of $1.00 per study. Age ranges of participants were reported from 18

to over 65, with an average range of 25-30. 52% were female. 13% did not fin-

ish college, 40% had a four year college degree and 47% had a graduate degree.

74% were familiar with data visualization; 66% used a mouse for the interactive

study and 34% had a trackpad. When asked about music tastes, 89% said they

listen to music frequently. Reported use of streaming services such as Pandora

was normally distributed. 71% of participants reported that they preferred a mix

of popular and esoteric music. Participants were asked an indirect question to
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assess trust propensity and behavior. The results were approximately evenly dis-

tributed across low, medium and high trust bins. During the design stage of this

experiment, approximately 10 informal lab-based studies were also conducted and

participants were interviewed to gauge their experiences with the system.

7.3 Interaction and Exploration

The interaction analysis shows important differences in user behavior among

the different conditions, which are summarized in Figure 7.1.
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Figure 7.1: Average amount of user actions in the four Moodplay conditions: (1) traditional
ranked list, (2) visualization without avatar, (3) visualization including avatar, and (4)
visualization with avatar and trails. Numbers in parentheses show the amount of users

performing the action.

In condition 1 users could see only the widget to add and remove profile

items (actions click add artist and click remove artist), and the ranked list of
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recommendations. Users could also play the music of the recommended bands

(click play) and follow links to artists’ Last.fm profiles (click lastfm). This limited

amount of interactive features made users focus on the aforementioned actions to

control the recommendations and explore their quality.

Condition 2 showed the visualization which allowed users to explore the

artists positioned on the mood space, but they could not update their recommen-

dations by interacting with an avatar. This probably explains why we see similar

number of actions to add (click add artist) and remove artists (click remove artist)

from the preference list. However, we see how users decreased the average amount

of bands whose music was played from the recommendation list (action click play)

and who fetched additional information in the bands’ Last.fm pages (click lastfm).

This does not mean a lack of user engagement with the system, but rather they al-

ternatively performed these explorations by interacting with the canvas, by click-

ing on the artist nodes (action click artist node), playing bands’ music directly

from the nodes in the mood space (action click artist node play) and fetching for

additional bands’ information in Last.fm pages (action click artist node lastfm).

In this condition, user sessions were shorter in seconds (M=385.78, S.D.=189.69)

compared to those in condition 1 (M=417.7, S.D.=261.27).

In condition 3, users where able to see the mood space and they addition-

ally had an avatar which could be dragged, and after each movement the list of

recommendations was updated. These interface features reduced the amount of

exploration, in terms of users and actions, over the mood space, but increased the
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users’ activity in general since now users played more artists in average (M=11.23,

S.D.=6.28) and they spent on average more time in second than all other condi-

tions (M=446.63, S.D.=237.24). Interestingly, users did not remove artists from

their user profile, since the simple movement of the avatar over the canvas was

enough to get recommendations updated.

Finally, in condition 4, the system had the same features as condition 3 with

the addition of a trail drawn between the positions the avatar. This produced a

decrease in amount of bands played per user with respect to condition 3 (M=9.54,

S.D.=5.24), but in terms of other actions was rather similar than condition 3 such

as interactions over the canvas (actions click artist node, click artist node play,

and click artist node lastfm) and fetching for additional artist information on

Last.fm (action click lastfm). In this condition there was a new action to allow

users remove the trail (action delete trail mark) which probably made users divert

their attention to deleting their previous avatar location to update the recommen-

dations. Users spent on average more time in condition 4 than in conditions 1

and 2, but less than in condition 3 (M=415.73 seconds, S.D.=173.38).

7.3.1 Diversity

One of the most interesting results of our study is that a precise combination of

visualization and interactions can effectively promote diversity among items con-

sumed. We measured this effect by analyzing the amount of unique artists rated

and played per user in each condition. With respect to artists played, we compared
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Figure 7.2: Consumption of unique items per user: rating-based (left) , and played-based
interactions in all interface (center) and on the recommendation list only (right).

“playing activity” in any widget of the interface (visual space and recommenda-

tions) and also in the recommendation list only, to make a fair comparison against

condition 1. Plots in Figure 7.2 show these distributions. Significant differences

were assessed with Wilcoxon signed-rank tests since data departs significantly from

normality. The most important result is that condition 3 significantly outperforms

all the other conditions in the three aforementioned metrics: rated items (M=10.59

, S.E.=0.41), p <.001, artists played anywhere (M=10.71, S.E.=0.81), p = .002,

and artists played on the recommendation panel only (M=10.61, S.E.=0.82), p

<.003. Also notable, condition 1 shows significantly more diversity than condition

2 in terms of unique artists rated 1 (M=8.56, S.E.=0.28), p <.001, and played in

the recommendation list (M=7.63, S.E.=0.43), p <.02.

7.3.2 Ratings

Now that we have discussed the various interactions that users made with

the canvas, we examine the impact of that interaction and exploration on actual
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ratings provided. An initial examination of the mean rating per condition (Figure

7.3) shows that mean rating of the final recommendation list is lowest in condition

2 and 4, but an anova shows that this is not a significant difference. To account for

rating propensity differences between users, a rating was taken for an initial list of

items at the beginning of each session, and then again for a list of recommended

items at the end of the session. Figure 7.4 shows the mean improvement in rating

observed across each condition from first list rated to last list rated. Ratings were

taken on a 5 point Likert scale. Here, condition 4 shows the largest improvement

in rating, but our data does not show that this is significant. However, looking at

the total shift in rating, regardless of direction, Figure 7.5 shows us clearly that

the more interactive conditions (3 and 4) produce a significant (p<0.05) shift in

ratings compared against the less interactive conditions (1 and 2). This result

indicates that simply explaining a mood space visually has minimal impact on

resulting item ratings, while interacting with an avatar, either with or without

trails, creates more variability in ratings. We are interested in further exploring

this effect to understand what patterns of interaction, if any, correlate with the

observed positive and negative changes in observed ratings.
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7.4 Mood-based Analysis

MoodPlay combines facets from data in the wild, automated algorithms, UI

design, perception and interaction. Since there are many interacting variables, it

is difficult to evaluate every possible causal relation for observed effects.

7.4.1 Mood Entropy

In order to explore the effects of mood data and interaction on observed user

ratings, we introduce the concept of mood entropy. For example, if there are

n different moods available, an artist has highest mood entropy if their music is

evenly distributed across all three top mood categories (sublime, vital and uneasy).

We believe this is a useful metric for MoodPlay since the interactive mood space

allows a user to navigate towards the areas where mood categories overlap or

towards the areas in distinct categories.

Figure 7.6 shows the results of our analysis of user ratings and entropy for

each of the four experimental conditions. Each data point is an individual musical
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artist. The x-axis shows rating bins for each condition and the y-axis shows the

entropy score. A low value on the y-axis means that an artist’s music tends to

focus on one mood category, while a high score shows a more even distribution

across the categories. Each group of box-plots represent the entropy of items that

received the given rating in each condition. We can observe from the right side

plots for conditions 3 and 4, that items that received ratings of 4 and 5 tend

to have higher entropy –that is, they are less associated with any one particular

category. Furthermore, if we look only at the lower entropy items, shown below

1.00 on the y-axis, there is a clear increase in the number of artists receiving 4

and 5 star ratings in conditions 3 and 4. This tells us that interaction in the

mood space also helps users find relevant artists whose music is focused on one

particular sentiment, as identified by our main mood categories.

C1:Traditional C2:Static Vis. C3:Vis. w/avatar C4:Vis. w/trails
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Figure 7.6: Entropy-based interaction results.
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7.4.2 Mood Preference

As described in the previous subsection, we observed that more interactive

conditions 3 and 4 helped users find artists representative of top mood categories

– sublime, vital and uneasy. To further explore relation between different mood

categories and rating accuracy, we compare ratings of artists across 5 groups:

sublime, vital, unease, other and mix. All groups except mix contain artists repre-

sentative of the corresponding categories, whereas mix group contains artists that

do not have a representative category. Next, we describe the process for forming

the groups.

An artist is characterized by weighted moods, each belonging to one mood

category. We form sets V = w0, ..., wk, U = w0, ..., wm, S = w0, ..., wl, and

O = w0, ..., wn where wi are weights of vital, uneasy, sublime and other moods

respectively. We define set A as a union of sets V , U , S and O. Finally, we

calculate the ratios v, u, s and o of each category that characterize the artist:

v =

∑
w∈V∑
w∈A

, u =

∑
w∈U∑
w∈A

, s =

∑
w∈S∑
w∈A

, o =

∑
w∈O∑
w∈A

(7.1)

We then place all the moods that have one prevalent category, with the ratio

greater than 0.5, into the corresponding group. All artists that do not have a

prevalent category, or in other words none of the categories has the ratio greater

than 0.5, are placed into group mix. Figure 7.7 shows average artist ratings for

each one of the groups. Group other consists of only 25 artists, significantly less
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Figure 7.7: Average ratings of artists belonging to different mood categories (vital, uneasy,
sublime and other) and those that do not have a dominant category (mix ).

that than the remaining groups, and therefore we don’t use it in the analysis. We

can see in the Figure 7.7 that groups mix and uneasy have the highest rating

and there is no significant difference between the two. However, we find that the

mean rating of artists in group mix (M=2.83 , S.E.=0.03) is significantly higher

that mean ratings in groups sublime (M=2.61, S.E=0.05), p = 0.0001 and vital

(M=2.52, S.E=0.1), p = 0.003.

To examine the effect of interactive MoodPlay features, we compare mean rat-

ings of artists in each group per experimental condition (Figure 7.8). In condition

1, the only significant difference shown by t-test is that mix (M=2.91, S.E=0.06)

is higher than sublime (M=2.52, S.E=0.1), p = 0.001, and in condition 2 un-

ease (M=3.06, S.E.=0.21) is higher than mix (M=2.57, S.E.=0.07), p = 0.03.

However, in conditions 3 and 4 we see the rating pattern observed earlier in the

aggregated ratings from all conditions. In condition 3, t-test doesn’t show sig-
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nificant differences, but from the plot we see the tendency for mix to be higher

than sublime and vital. But, in condition 4, mix (M=2.87, S.E.=0.07) is higher

than vital (M=2.45, S.E.=0.16), p = 0.02 and sublime (M=2.5, S.E.=0.08), p =

0.0005.

Considering that users were updating recommendations only by adding or

removing artists into their profile in conditions 1 and 2, rating differences among

different mood groups may be due to preferences of users who participated in those

conditions. In conditions 3 and 4, users were able to control recommendations by

moving the avatar or adjusting the hybrid recommendation algorithm, and on

average they gave higher ratings to the artists with mixed moods. Although more

research is needed to make conclusive results, this indicates that people on average

prefer recommendations that carry distributed mood content, over those that have

a dominant mood category.

7.5 Qualitative Analysis

Recently, researchers in recommender systems are recognising the importance

of user experience in addition to traditional success metrics such as predictive

accuracy and diversity. In this experiment, a large amount of qualitative data

was collected in order to explore variations in user experience across the 4 ex-

perimental conditions. The participants were asked to rate around 20 statements

(numbers per conditions differ slightly) with values from 1 to 100 which indicate
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Figure 7.8: Average ratings of artists belonging to different mood categories (vital, uneasy,
sublime and other) and those that do not have a dominant category (mix ), per experimental

condition.

disagreement and agreement respectively. For simplicity, we report only answers

to a set of the most relevant questions here (Table 7.1) and list all questions of

this type in the Appendix B.

Perceived trust was measured from two different angles: trust that the system

produces good recommendations and the effect of interface on the trust in the

recommendations. In all four conditions users believe that interface improves their

inherent trust in the system. This is most prominent in condition 1, which does

not display the mood space, but still shows mood categories and sub-categories for

artists in the recommendation list. System was perceived as the most trustworthy

overall in condition 3, whereas interface increased the trust the least in condition

4.
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Mean agreement and standard error per condition

Statement 1 2 3 4

I trusted recommendations from the system 37.1 ± 3.6 44.6 ± 3.5 48.8 ± 3.5 38.4 ± 3.6

Interaction with the interface increased my trust in
the recommendations

43.4 ± 3.6 47.1 ± 3.8 49.4 ± 3.8 39.2 ± 3.7

The recommendations were diverse 60.9 ± 3.3 65.3 ± 3.3 68.6 ± 3.3 59.9 ± 3.3

The interface helped me understand and compare
moods of different artists

49.4 ± 3.5 55.7 ± 3.5 55.7 ± 3.3 46.3 ± 3.4

The interface helped me understand how recommen-
dations were generated

42.8 ± 3.6 54.4 ± 3.9 58.6 ± 3.8 50.3 ± 3.7

The interface was confusing 23.1 ± 3.1 45.3 ± 4.1 46 ± 3.9 52.6 ± 3.9

Overall, the recommendations were accurate 36.2 ± 3.6 40.7 ± 3.6 49.8 ± 3.7 38.7 ± 3.5

The system was easy to use 73.9 ± 3.6 58.3 ± 3.8 63.8 ± 3.6 53.2 ± 4

By the end of the session I was satisfied with the
recommendations

42.2 ± 4.1 44.2 ± 4 49.3 ± 3.9 38 ± 3.6

Table 7.1: Summary of the most relevant variables in the post-study survey. Numbers
indicate average user agreement (on a scale from 1-100) with mean ± S.E.

We also examined how interface affects understanding of moods and the rec-

ommendation process. As expected, perceived ease of use drops-off with the in-

creasing interface complexity and confusion rises. Interface in the condition 3 has

the best balance of explanation and clarity, followed by condition 2. Furthermore,

we did not see a clear differences in average ratings per condition, but the percep-

tion of accuracy in condition 3 is significantly higher than in conditions 1, 2 and

4. Similarly, participants perceived recommendations in condition 3 as the most

diverse, and those in condition 4 as least diverse. All of these results indicate that

the visual layout of moods and artists, with the addition of ability to re-position

the avatar in the mood space and control the hybrid recommendation algorithm,

gradually improve user experience. However, introduction of trails in condition 4
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has a negative effect, most likely because of the cognitive overload. In addition,

we suspect that trails may be perceived as limiting for exploration and may be

causing a conflict between user’s expectation to receive recommendations only

from the most recent mood area rather than all previous trail points.

7.5.1 Participant Feedback

In each condition, participants were asked in the post survey to leave feedback

on their experience and give suggestions for improving the system. Table 7.2 lists

representative comments, grouped by condition and sentiment. On the positive

side, many users had fun using MoodPlay and enjoyed discovering new artists in

different moods in conditions 3 and 4. Drawbacks observed across all four condi-

tions are small artist database and mixing genres in the recommendation lists. In

addition, visualization rendering was sluggish for some users. These problems can

be addressed in the future by considering genre in the recommendation algorithm

and by optimizing visual solution for even larger artist database.
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Cond. Positive comments Negative comments

1 All good. Add more bands/artists to the search- for ex-
ample, neither Silversun Pickups nor Smash-
ing Pumpkins were found to add to my list.

It was really fun. The recommendations didn’t seem to match
the artists I chose.

I enjoyed using this! Show more information on how the mood of
a song/artist is determined.

2 I think this could be a great tool. Good luck
with the progress I am anxious to give it a try
when it is finished

I put in 3 rappers and it gave me like oldies
and pop songs. Genre plays roles in certain
moods.

I really liked this, it is a new concept that I’ve
never seen. It helped introduce me to artists
in different genres that I had never heard be-
fore and were very good.

It runs a little slow, should improve optimiza-
tion for older computers.

The mood cloud is awesome, and I didn’t
know there could be so many different music
moods, that was great, but not being able to
explore the artists within each specific mood
circle causes some frustration. Making the
cloud more dynamic to dragging and clicking
would enhance the tool.

I really didn’t understand it.

3 Really good player, i would change nothing it
actually made me listen to a couple of artists
i did not know about and liked their music.

Make the interface simpler and more concise.
Speed up loading times

An interesting concept. I use Pandora a lot,
and my stations are usually based off of my
mood that day. This tool would be useful for
randomization of choices of music.

It was slow and laggy and some of the rec-
ommendations didn’t have a play button. I’d
like the option to buy a track if I heard one
I really liked, or to save a playlist if I really
enjoyed it.

This is really cool, I do not listen to much mu-
sic and I think this would help me find some
new artists or even be used as a therapy tool.

Larger music selection, possibly change the
strong week slider, to broad or specific to the
particular mood you are feeling.

4 its a cool design Some of recommended artists didn’t relate to
my mood close enough.

Neat program! If I could practice with it more
I think I would really enjoy it.

There is a lot of text on the page and it’s
a little overwhelming. Instead of starting off
with so many ”moods,” maybe just have 20
initially listed.

It was excellent! Thanks to the developers for
developing wonderful tool.

Make the interface faster and smoother.
There was too much choppiness when I was
using the visualization tool.

Table 7.2: Selected positive and negative user feedback grouped by experimental condition.
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Chapter 8

Summary

This dissertation is motivated by a need to fill in the gaps in music recommen-

dation research by addressing topics in user interface and interaction design, user

modeling and automated algorithms. It proposes novel visualization of mood-

artist associations, that serves as a basis for novel interaction techniques, aimed

to improve user experience with a recommender system. These novelties are built

in and demonstrated in MoodPlay – an interactive, hybrid music recommender.

Previous chapters explain in detail where MoodPlay stands in relation to previous

research, what interface design decisions were made to build it and hybrid recom-

mendation algorithms that were employed. Two extensive user studies were also

conducted that show how proposed features improve user acceptance and under-

standing of artist moods and recommendations, and what level of interaction is

suspected to cause cognitive overload. This chapter discusses answers to research
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questions listed at the beginning of the document, dissertation contributions and

future work.

8.1 Discussion

The development of MoodPlay system, and the quantitative and qualitative

analysis of experiment results illuminate answers to dissertation research ques-

tions.

Question 1: How can metadata such as mood information be visually repre-

sented for a music recommendation system?

Mood information has been visually represented in several preceding works,

with the goal to enable user selection of artists in desired moods. Typically, user

would choose a mood point in the visual space and the system would play music

associated with the selected mood. To our knowledge, all up to date visualizations

of moods for this purpose are based on circumplex model of affect, that represents

moods along valence and arousal dimensions. Chapter 3 argues that there exists

a need to use a music specific mood model for the purpose of music recommen-

dation, and proposes an approach to fulfilling it. Specifically, a dimensionality

reduction method was applied to high-dimensional data containing mood-artist

associations. It was then shown that a mood model, previously developed in mu-

sic psychology research, emerges in the obtained two-dimensional, latent space.
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To use this space during recommendation process, and help users understand it

better, several design aspects were addressed when incorporating it into an inter-

active system. Choice of colors, item sizes and transparency, dynamic labeling of

mood nodes and node filtering based on mood categories all aim towards explain-

ing the mood space and supporting the recommendation.

Question 2: How can interaction, explanation and control be supported over

such a visualization?

One possible answer to this question was found through the development of

MoodPlay system and described in detail in Chapter 4. The interaction with the

system ranges from zooming and panning the visualization to explore the moods

and artists, to controlling the hybridization of recommendation algorithm. Both

user’s profile items and recommended artists are highlighted in the visualization,

which helps user understand how those two sets are related based on moods. The

explanation and exploration are further supported by providing links to external

artist profiles, allowing music streaming and displaying mood categories for rec-

ommended items. User avatar is positioned within the mood space as a centroid

of user profiles items. The ability to move the avatar and form a trail of mood

markers serves as a mechanism for modeling the change in user preference. This

is one way to control the recommendations, as they are computed whenever the

position is changed. Second way to influence the recommendation algorithm is by

setting the ratio between importance of mood versus audio based filtering. This is
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achieved by controlling simple slider and visually explained to user by resizing the

catchment area around the avatar. As the area is increased, the recommendation

results depend more on the audio similarity to the profile items and less on the

mood metadata.

Question 3: What are the effects of such interactive visualizations on the

user experience with a recommender system? For example, how much interaction

is too much?

User study results clearly showed that the proposed interface design and a

certain combination of interactive features improve objective and perceived rec-

ommendation accuracy, as well as self-reported user satisfaction. We have shown

that introduction of hybridization control for recommendation algorithm and the

ability to move user avatar, yielded positive effects across a variety of examined

metrics. An important finding was that such features increase user trust and rec-

ommendation accuracy, even when the artist are misplaced in the mood space or

in other words, mood component of the recommendation algorithm is not fully

functional. However, tracking of user mood states in the form of proposed trail

introduced undesirable effects. First, we suspect this increased system complexity

above comfortable threshold and caused cognitive overload. Second, users who

are unfamiliar with the system and participate in short listening sessions, may be

more inclined to rapidly investigate the mood space than familiar users in a more

natural setting. The trail may have been perceived as a limitation during relatively
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short experiment sessions. Nevertheless, modeling of changing mood preference

is a fruitful research endeavor and our future work can address trails that follow

smoother mood transitions, are optional and used during longer listening sessions.

Question 4: How does knowledge of and interaction with mood metadata

influence recommendation accuracy and user experience?

The interactive mood space encouraged exploration of music data, as evidenced

by results in Figure 7.6. We observed that user profile items were overall a mix of

three main mood categories, but the opportunity to navigate in the mood space

led users to explore more artists with more homogeneous moods. Interestingly,

not all discovered artists were received positively, especially in the trail based con-

dition which imposed limitations to exploration, along with a cognitive overload.

We also observed that when given the opportunity to explore music collection

by mood metadata and control the recommendation algorithm, users preferred

artists characterized by a mix of mood categories over those that have a dominant

category.

8.2 Contributions

The main contributions of this work lie in the areas of user interface design,

interaction techniques and recommendation algorithms.

1. Novel visual interface for recommendation
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This is the first visual interface that maps music moods and artists in the

space alternative to circumplex valence – arousal model. Numerical analy-

sis in combination with holistic approach show that a music specific mood

model, derived from extensive studies in music psychology, emerges in the

visualization of real world music data.

2. Hybrid mood-aware recommendation algorithm

Although mood tags were used in recommendation algorithms before, and

hybrid approaches are common, the contribution here is in the manner of

using mood metadata and audio content to suggest new music. These two

components are combined in a cascading recommender, in such a way that

the method is visually explained to the user at a conceptual level. First,

the mood-aware recommendation is computed using the two dimensional

representation of high-dimensional mood-artist associations. As a result, it

is simple for a user to see where the suggested items lie in the mood space.

The second step is filtering of mood-aware recommendations based on audio

similarity to the items in the user profile. This filtering can be adjusted by

user and the effects are visually explained in the mood space.

3. Enhanced interaction techniques

Main contribution in this area are two following techniques: (1) user con-

trol over hybridization of recommendation algorithm (as explained in the

previous paragraph), realized in the form of a slider control and (2) trail
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algorithm that enables the system to keep track of users marker points in

the mood space as she navigates it.

The outlined novelties were evaluated in two user studies and the results show

important connections between interaction with new features and user’s experi-

ence with the system. The findings presented in this document inform the design

of future interactive recommenders in various domains. Proposed visualization

of hierarchical mood model can serve as a tool for further investigation of music

perception, and moods expressed and invoked by music. The interactive system

itself, here prototyped as MoodPlay, has applications not only in entertainment

but also in music therapy, as indicated by several users. Lessons learned during

up to date research can lead to the improvements of the system and adaptation

for different situations. On the other hand, the interaction techniques such as

hybridization control and preference trail can be applied to any recommendation

system that maps items in a navigable space.

8.3 Future Work

There is fertile ground for expansions and branching of this dissertation work

in several directions. Besides recommending specific songs rather than artists

based on mood, MoodPlay system can be improved in the following ways.

Preference trail algorithm. Through the extensive evaluation of the system

it was observed via numerous metrics that users preferred recommendations ob-
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tained by navigating music collection freely, over the recommendations received

by means of available trail based algorithm. This does not mean that modeling

the changing preference is not desirable, but rather that the method for doing so

needs improvement. For example, users could be given a choice whether to use

the system in an exploratory mode and freely navigate, or in preference modeling

mode and build the trail. Depending on user’s activity, available time and listen-

ing context, she could choose to be more or less engaged in the interaction with

the system. In cases when user chooses to build the trail, recommending items

along the trail, in between trail marks, could provide more gradual change in the

recommendations and possibly give a more enjoyable listening experience during

long sessions. Such recommendation method would require evaluation in a more

natural setting, over a longer period of time.

Comparison of proposed mood space to Circumplex model of affect. To over-

come some shortages of using Russel’s Circumplex model of affect to map artists

in a mood space, this dissertation proposes usage of music specific mood model.

We justified the validity of proposed mood space by showing that mood model

formed as a result of extensive research in psychology emerges in a low-dimensional

space formed by real-world artist – mood associations. However, further research

is needed to investigate to what degree the proposed model overcomes the short-

comings of Circumplex model. For example, one metric for comparison is the

number and similarity degree of dissimilar moods appearing close to each other

in space. It is also important to note that using different set of artists to build
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the space would produce different results. But the expectations is that the spaces

built on sufficiently large sets would have very similar mood layout. Another

suspected advantage of the proposed model is that users can find desired moods

faster and easier by using the hierarchical structure. Additional experiment to

test this hypothesis would be beneficial.

Recommendation algorithm. The average rating values in user studies were ap-

proximately around 3 (on a 5 point scale), independent of experimental conditions

and other examined factors. In addition, many users said in the post-survey that

the system suggested artists that either didn’t match their mood or played music

in different genre. First, building the mood space using larger artist database

should improve the mood based component of the recommendation algorithm.

Next, MoodPlay system accounts for audio similarity when recommending music,

but audio content analysis doesn’t always accurately distinguish between music

genres. Therefore, recommendation algorithm can be improved by incorporating

genre information. In addition, the system uses audio similarity method that pre-

viously yielded satisfactory results but further investigation and comparison of

algorithms could yield better results.

Scalability. MoodPlay system was developed on a database of around 5000

artists. In comparison, online streaming services offer access to tens of millions of

artists. In order to maximally scale the system, extensive work is needed in several

areas. Even though there are efficient ways for dimensionality reduction of millions

of data points, visualization design has to be adapted to accommodate such a large
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number. One simple way to achieve this is to show only limited number of artists

on different zoom levels, according to some criteria such as popularity or user’s

preference. A challenge in such a filtering method is to determine what artists

the user is interested in seeing, and to show popular artist but also encourage

discovery by introducing less known artists. Finally, more sophisticated algorithms

are needed to for computing recommendations on the large scale.

Automated profile building. As of now, users build their profile by manually

selecting several artists that they like. Rich research in affective computing briefly

outlined in Section 2.2 informs multiple ways of improving MoodPlay to collect

user’s taste and mood data. For example, user’s mood and current preference

could be determined based on contextual data such as: social media statuses,

time of the day, weather, activity automatically inferred from GPS location or

proximity of friends in the network, facial expression captured by mobile device

or bodily functions measured by wearable devices.

105



Appendix A

Correspondence Analysis

Correspondence analysis (CA) is a multivariate statistical method introduced

by Hirschfeld (Hirschfeld, 1935) and developed by Jean-Paul Benzecri in the early

1970s. It is conceptually similar to Principal component analysis (PCA), but ap-

plies to categorical rather than continuous data. It is most often used to analyze

contingency tables – tables that display frequency distribution of variables (e.g.

geographical areas and smoking habits or symptoms and treatments in medical

research). CA helps identify relations between the variables by graphically rep-

resenting them in a compact form. This technique and its variations are used to

solve problems in a variety of fields: engineering, ecology, humanities, marketing

etc. In this dissertation project, CA is used to find relations between 3275 artists

and 289 moods. Each artist is characterized by a number of moods, weighted

according to their relevance. For the purpose of demonstrating usage of CA, table

A.1 shows sample data, where 6 artists are described by 4 different moods.

106



Artist / Mood Ambitious Bombastic Gentle Refined

Erykah Badu 6 3 1 0

Jovanotti 2 7 0 0

Woodkid 5 0 3 4

Nneka 4 2 4 1

Kopps 3 8 1 0

Table A.1: Sample contingency table with artists and associated moods as variables

The contingency table with artists and moods as variables, is represented as

matrix X and transformed into row and column factor scores R and C. Details of

mathematical transformations involved in CA can be found in Abdi, 2010. Here,

it is sufficient to say that the data for visualizing relations between the variables

is obtained from R and C, where the values correspond to x and y coordinates for

artists and moods respectively.
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M =



6 3 1 0

2 7 0 0

3 7 0 0

5 0 3 4

0 0 6 6

0 1 5 7



−→ R =



r11 r12

r21 r22

r31 r32

r41 r42

r51 r52

r61 r62



, C =



c11 c12

c21 c22

c31 c32

c41 c42
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Appendix B

Survey Questions

B.1 Pre-survey

Before starting the experiment main task, participants in the study answered

questions about demographics, previous experience with recommendation systems

and several other relevant topics.

1. What is your age range?

(a) 18-25
(b) 25-35
(c) 35-50
(d) 50-65
(e) Over 65

2. What is your gender?

(a) Male
(b) Female

3. What is your education level?

(a) High School or Less
(b) Some College
(c) College Graduate
(d) Master’s Degree
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(e) Doctoral Degree

4. What is 4 + 8?

5. How familiar are you with data visualization, network visualization, or
graphing tools? This could be Matlab, Microsoft Excel, statistics pack-
ages like R, or things like parallel coordinate plots, heatmaps, treemaps, or
scatter plots.

(a) Not Familiar
(b) Somewhat Familiar
(c) Very Familiar

6. What type of input device are you using on your computer today?

(a) Mouse
(b) Trackpad
(c) Other

7. How often do you use a computer workstation? This could be a notebook
computer over 15” or a desktop computer, either for work or personal use.

(a) Never
(b) Rarely
(c) Sometimes
(d) Often
(e) All of the Time

8. How often do you play strategy games or role playing games, e.g. Starcraft
or Grand Theft Auto?

(a) Never
(b) Rarely
(c) Sometimes
(d) Often
(e) All of the Time

9. How often do you listen to music?

(a) Never
(b) Rarely
(c) Sometimes
(d) Often
(e) All of the Time

10. How often do use recommender systems (systems that predict items for you,
such as Netflix or Amazon)

(a) Never
(b) Rarely
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(c) Sometimes
(d) Often
(e) All of the Time

About how many songs have you listened to through streaming applications
such as Spotify, Pandora or Last.fm?

(a) Don’t Use
(b) 50 or less
(c) 51-500
(d) 501-1000
(e) over 1000

11. Are you a native English speaker?

(a) Yes
(b) No

12. Which animal is heavier on average, an elephant or a mouse?

13. Please select the option that best describes your music listening experience

(a) Very easily satisfied
(b) Moderately easy to satisy
(c) Difficult to satisfy
(d) Very difficult to satisfy

14. How would you describe your tastes in music?

(a) Mostly like popular music
(b) Like a mix of popular and esoteric music
(c) Mostly like esoteric music

15. How much does your current mood usually influence your decisions

(a) Not at all
(b) Rarely
(c) Moderately
(d) Frequently
(e) Very Frequently

16. Please rate your agreement with the following. (0=”Not at all”, 100=”Fully
Agree”). Compared to my peers I...

(a) 0 - 100 I listen to a lot of music.
(b) 0 - 100 am an expert on music
(c) 0 - 100 am a music lover

17. Consider the following hypothetical scenario...You have $50. You can keep
this money and do with it whatever you wish or you can send some or all
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of it to another person in another room (whom you will never see or meet).
They are also given $50 and the same instructions. Any money sent will be
tripled on the way to the other person. Thus, if you send them $10, they
will receive $30; if they send you $30, you will receive $90, and so on. You
can send them any amount that you wish. You can send them nothing if you
wish. This decision is completely up to you.How much of your $50 would
you send?

(a) $0
(b) $10
(c) $20
(d) $30
(e) $40
(f) $50

18. How much do you agree with the following statement: ”I am a trusting
person.”

(a) Strongly Disagree
(b) Disagree
(c) Neither Agree nor Disagree
(d) Agree
(e) Strongly Agree

19. Which of the following best describes your current mood?

(a) Sublime (e.g.: joyful, warm and tender moods)
(b) Vital (e.g.: stimulating moods such as ’lively’, ’energetic’ or ’fierce’)
(c) Uneasy (e.g.: negative moods such as ’sad’, ’tense’ or ’fearful’)

20. What type of audio will you use for this HIT?

(a) Speakers
(b) Headphones
(c) None

21. Browser Meta Browser Version Operating System Screen Resolution Flash
Version Java Support User Agent

B.2 Post-survey

After completing the main experiment task, participants in the user study an-
swered a range of questions regarding their experience with the system. Following
Table B.1 contains the list of post-survey questions and average response values
in the second user study.
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Average response
value per condition

Question 1 2 3 4

The interface helped me understand and compare moods of different
artists

49.4 55.7 55.7 46.3

I trusted recommendations from the system 37.1 44.6 48.8 38.4

Interaction with the interface increased my satisfaction with recom-
mendations

43.4 50.5 52.4 42.0

Adding items to my profile increased my trust in the recommendations 43.4

Interaction with the interface increased my trust in the recommenda-
tions

47.1 49.4 39.2

The interface helped me understand how recommendations were gen-
erated

42.8 54.4 58.6 50.3

The interface was confusing 23.1 45.3 46.0 52.6

The interface was slow 22.2 32.3 31.9 37.8

The tutorial explained the system reasonably well. 72.6 62.9 65.8 57.5

By the end of the session I was satisfied with the recommendations. 42.2 44.2 49.3 38.0

Overall, the recommendations were accurate 36.2 40.7 49.8 38.7

The recommendations were diverse 60.9 65.3 68.6 59.9

The interface helped me to control the recommendations 42.7 53.8 63.8 52.7

The system was easy to use 73.9 58.3 63.8 53.2

The system was fun to use 61.8 59.5 65.8 56.3

I would recommend this system to my friends 48.7 48.4 55.5 43.9

I found useful the ability to explore moods and songs in the canvas 59.1

I found the ability to move my avatar around useful 62.5

The interface helped me express my current mood 51.1

I found the trail-based navigation useful 44.7

I understood what the slider on the top right (strong or weak mood
influence) controlled

54.6 60.6

Table B.1: Questions given to users in the post-study and answered via slider control with
values ranging from 1 (Strongly disagree) to 100 (Strongly agree). Last four columns contain

average response values for each question, across four experimental conditions. Missing average
response value means that the question was irrelevant and thus not presented in the

corresponding condition.
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